Discrete calculus

Gustavo Lau

Discrete calculus

The purpose of this presentation is to give an introduction to a version of calculus that applies to sequences. It is known as finite or discrete calculus.

This relatively unknown theory has, surprisingly, many analogous results and parallel techniques to those of traditional calculus.

This presentation is aimed at UK Year 13 students that are taking Further Maths A-level.

Discrete calculus

The basic objects of study in traditional calculus are functions that have real numbers as both input and output (domain and range):

$$
f: \mathbb{R} \rightarrow \mathbb{R}
$$

In discrete calculus the functions have as input the natural numbers:

$$
u: \mathbb{N} \rightarrow \mathbb{R}
$$

We traditionally call these functions sequences and we use the notation u_{n} instead of $u(n)$. We use n instead of x to emphasize that n is a natural number.

Discrete calculus

$f(x)=x^{2}$

Discrete function (sequence):

$$
u_{n}=n^{2}
$$

Derivative and difference

Let's recall the definition of the derivative:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

In the discrete case the smallest possible h is 1 :

$$
\frac{f(x+1)-f(x)}{1}
$$

This leads to the discrete version of the derivative. The difference of a sequence u_{n} is defined as:

$$
\Delta u_{n}=u_{n+1}-u_{n}
$$

Difference

The difference of a sequence u_{n} is:

$$
\Delta u_{n}=u_{n+1}-u_{n}
$$

Examples:

n	0	1	2	3	4	5
u_{n}	7	7	7	7	7	7
Δu_{n}	0	0	0	0	0	
u_{n}	0	6	12	18	24	30
Δu_{n}	6	6	6	6	6	

Sequence type Constant Zero

Linear
Constant

u_{n}	0	1	4	9	16	25
Δu_{n}	1	3	5	7	9	

Quadratic
Linear

u_{n}	1	2	4	8	16	32	Geometric (Exponential)
Δu_{n}	1	2	4	8	16		Geometric (Exponential)

The differences behave similarly to the derivatives.

Geometric interpretation of the difference

The difference of a sequence u_{n} is:

$$
\Delta u_{n}=u_{n+1}-u_{n}
$$

$$
u_{n}=n^{2}
$$

$\Delta u_{1}=u_{2}-u_{1}=4-1=3$ is the gradient (slope) of the line that goes through $\left(1, u_{1}\right)$ and ($2, u_{2}$).

In general, Δu_{n} is the gradient of the line that goes through $\left(n, u_{n}\right)$ and $\left(n+1, u_{n+1}\right)$.
This is analogous to: $f^{\prime}(x)$ is the gradient of the tangent of $y=f(x)$ that goes through $(x, f(x))$.

Difference of n^{2}

The difference of $u_{n}=n^{2}$ is:

$$
\Delta u_{n}=(n+1)^{2}-n^{2}=2 n+1
$$

We would like to obtain a similar result to

$$
f(x)=x^{2} \Longrightarrow f^{\prime}(x)=2 x
$$

For that purpose we define the falling factorial (power):

$$
n^{\underline{2}}=n(n-1)
$$

Then:

$$
\begin{aligned}
u_{n}=n^{\underline{2}} \Longrightarrow \Delta u_{n} & =(n+1)^{\underline{2}}-n^{\underline{2}} \\
& =(n+1) n-n(n-1) \\
& =2 n
\end{aligned}
$$

Differences

Worksheet 1

The difference of a sequence u_{n} is:

$$
\Delta u_{n}=u_{n+1}-u_{n}
$$

In general, the falling factorial (power), n to the k falling, when $k>0$, is:

$$
\begin{aligned}
& n^{\underline{k}}=n(n-1) \ldots(n-k+1) \\
& n^{\underline{0}}=1 \\
& n^{\underline{-k}}=\frac{1}{(n+1)(n+2) \ldots(n+k)}
\end{aligned}
$$

Difference of a falling factorial

The falling factorial (power), n to the k falling when $k>0$, is:

$$
n^{\underline{k}}=n(n-1) \ldots(n-k+1)
$$

If $u_{n}=n^{\underline{k}}$ then:

$$
\begin{aligned}
\Delta u_{n} & =(n+1)^{\underline{k}}-n^{\underline{k}} \\
& =((n+1) n \ldots(n-k+2))-(n(n-1) \ldots(n-k+1)) \\
& =n(n-1) \ldots(n-k+2)(n+1-(n-k+1)) \\
& =k n \underline{\underline{k-1}}
\end{aligned}
$$

Therefore:

$$
u_{n}=n^{\underline{k}} \Longrightarrow \Delta u_{n}=k n \underline{k-1}
$$

This is the discrete version of:

$$
f(x)=x^{k} \Longrightarrow f^{\prime}(x)=k x^{k-1}
$$

Difference of a falling factorial

When the exponent is negative the definition is:

$$
n^{\underline{-k}}=\frac{1}{(n+1)(n+2) \ldots(n+k)}
$$

If $u_{n}=n \underline{-k}$ then:

$$
\begin{aligned}
\Delta u_{n} & =(n+1) \frac{-k}{-n \frac{-k}{1}} \\
& =\frac{1}{(n+2)(n+3) \ldots(n+k+1)}-\frac{1}{(n+1)(n+2) \ldots(n+k)} \\
& =\frac{n+1-(n+k+1)}{(n+1)(n+2) \ldots(n+k+1)} \\
& =\frac{-k}{(n+1)(n+2) \ldots(n+k+1)} \\
& =-k n \frac{-k-1}{}
\end{aligned}
$$

$$
\therefore u_{n}=n \underline{-k} \Longrightarrow \Delta u_{n}=-k n \frac{-k-1}{}
$$

Difference of a geometric (exponential) sequence

If u_{n} is a geometric sequence we have:

$$
u_{n}=c^{n} \Longrightarrow \Delta u_{n}=c^{n+1}-c^{n}=c^{n}(c-1)
$$

In particular if $c=2$:

$$
u_{n}=2^{n} \Longrightarrow \Delta u_{n}=2^{n}
$$

This is the discrete version of the exponential function:

$$
f(x)=e^{x} \Longrightarrow f^{\prime}(x)=e^{x}
$$

Another way to see that 2 is the discrete version of e is:

$$
2^{n}=(1+1)^{n}=\sum_{r=0}^{n}\binom{n}{r}=\sum_{r=0}^{n} \frac{n(n-1) \ldots(n-r+1)}{r!}=\sum_{r=0}^{\infty} \frac{n^{r}}{r!}
$$

This is similar to the exponential function's MacLaurin series:

$$
e^{x}=\sum_{r=0}^{\infty} \frac{x^{r}}{r!}
$$

Properties of differences

If u_{n} and v_{n} are sequences and c is a constant:

$$
\begin{aligned}
\Delta\left(u_{n}+v_{n}\right) & =\Delta u_{n}+\Delta v_{n} \\
\Delta\left(c u_{n}\right) & =c \Delta u_{n} \\
\Delta\left(u_{n} v_{n}\right) & =\left(\Delta u_{n}\right) v_{n+1}+u_{n} \Delta v_{n} \\
& =\left(\Delta u_{n}\right) v_{n}+u_{n} \Delta v_{n}+\Delta u_{n} \Delta v_{n} \\
\Delta\left(\frac{u_{n}}{v_{n}}\right) & =\frac{\left(\Delta u_{n}\right) v_{n}-u_{n} \Delta v_{n}}{v_{n} v_{n+1}}
\end{aligned}
$$

(Linearity 1)
(Linearity 2)
(Product rule)
(Quotient rule)

These are similar to:

$$
\begin{aligned}
(f+g)^{\prime}(x) & =f^{\prime}(x)+g^{\prime}(x) \\
(c f)^{\prime}(x) & =c f^{\prime}(x) \\
(f \cdot g)^{\prime}(x) & =f^{\prime}(x) g(x)+f(x) g^{\prime}(x) \\
\left(\frac{f}{g}\right)^{\prime}(x) & =\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}
\end{aligned}
$$

(Linearity 1)
(Linearity 2)
(Product rule)
(Quotient rule)

Geometric proof of the product rule

$$
\Delta\left(u_{n} v_{n}\right)=u_{n+1} v_{n+1}-u_{n} v_{n}=\left(\Delta u_{n}\right) v_{n+1}+u_{n} \Delta v_{n}
$$

Indefinite sum

The indefinite integral, also known as the antiderivative, is the inverse operation to the derivative. That is, to evaluate the integral:

$$
\int f(x) \mathrm{d} x
$$

we search for a function F such that $f(x)=F^{\prime}(x)$.
The discrete version is the indefinite sum, also known as the antidifference. It is the inverse operation to the difference. To evaluate the sum:

$$
\sum_{n} u_{n}
$$

we search for a sequence U such that $u_{n}=\Delta U_{n}$.

Indefinite sum

Another way to describe the indefinite integral is:

$$
\int f^{\prime}(x) \mathrm{d} x=f(x)+C
$$

and the analogous for the indefinite sum is:

$$
\sum_{n} \Delta u_{n}=u_{n}+C
$$

Leibniz introduced the integral symbol based on the long letter S (a letter that fell out of use in the 19th century) because he thought of the integral as an infinite sum of infinitesimal summands. He even used the name 'calculus summatorius', the name integral calculus appeared later.

It was common to use S for summation until Euler's capital sigma, the Greek S, became popular.

Indefinite sums

Worksheet 2

To evaluate the sum:

$$
\sum_{n} u_{n}
$$

we search for a sequence U such that $u_{n}=\Delta U_{n}$.

Elementary differences and sums

Sequence Difference

Properties of indefinite sums

If u_{n} and v_{n} are sequences and c is a constant:

$$
\begin{aligned}
& \sum\left(u_{n}+v_{n}\right)=\sum u_{n}+\sum v_{n} \\
& \sum\left(c u_{n}\right)=c \sum u_{n} \\
& \sum u_{n} \Delta v_{n}=u_{n} v_{n}-\sum v_{n+1} \Delta u_{n}
\end{aligned}
$$

(Linearity 1)
(Linearity 2)
(Sum by parts)
These are similar to:

$$
\begin{align*}
& \int[f+g](x) \mathrm{d} x=\int f(x) \mathrm{d} x+\int g(x) \mathrm{d} x \tag{Linearity1}\\
& \int c f(x) \mathrm{d} x=c \int f(x) \mathrm{d} x \\
& \int u \frac{\mathrm{~d} v}{\mathrm{~d} x} \mathrm{~d} x=u v-\int v \frac{\mathrm{~d} u}{\mathrm{~d} x} \mathrm{~d} x
\end{align*}
$$

(Linearity 2)
(Integration by parts)

Note that the sum and integration by parts formulas come from the respective product rules.

Definite sum

The fundamental theorem of calculus: If $f(x)=F^{\prime}(x)$ then

$$
\int_{a}^{b} f(x) \mathrm{d} x=\left.F(x)\right|_{a} ^{b}=F(b)-F(a)
$$

has this discrete version: If $u_{r}=\Delta U_{r}$ then

$$
\sum_{r=a}^{b} u_{r}=\left.U_{r}\right|_{a} ^{b+1}=U_{b+1}-U_{a}
$$

This is the method of differences to compute telescoping sums:

$$
\begin{aligned}
\sum_{r=a}^{b} u_{r} & =\sum_{r=a}^{b} \Delta U_{r} \\
& =\left(U_{a+1}-U_{a}\right)+\left(U_{a+2}-U_{a+1}\right)+\cdots+\left(U_{b+1}-U_{b}\right) \\
& =U_{b+1}-U_{a}
\end{aligned}
$$

Fundamental theorem of sum calculus

If $u_{r}=\Delta U_{r}$ then

$$
\sum_{r=a}^{b} u_{r}=\left.U_{r}\right|_{a} ^{b+1}=U_{b+1}-U_{a}
$$

Let's solve a classic example of the method of differences using the fundamental theorem of sum calculus:

$$
\begin{gathered}
\sum_{r=a}^{b} \frac{1}{r(r+1)} \\
U_{r}=-\frac{1}{r} \Longrightarrow \Delta U_{r}=-\frac{1}{r+1}-\left(-\frac{1}{r}\right)=\frac{1}{r(r+1)} \\
\therefore \sum_{r=a}^{b} \frac{1}{r(r+1)}=-\left.\frac{1}{r}\right|_{a} ^{b+1}=-\frac{1}{b+1}-\left(-\frac{1}{a}\right)=-\frac{1}{b+1}+\frac{1}{a}
\end{gathered}
$$

Definite sums

Worksheet 3

Fundamental theorem of sum calculus: If $u_{r}=\Delta U_{r}$ then

$$
\sum_{r=a}^{b} u_{r}=\left.U_{r}\right|_{a} ^{b+1}=U_{b+1}-U_{a}
$$

Fundamental theorem of sum calculus

If $u_{r}=\Delta U_{r}$ then

$$
\begin{gathered}
\sum_{r=a}^{b} u_{r}=\left.U_{r}\right|_{a} ^{b+1}=U_{b+1}-U_{a} \\
\sum_{r=0}^{n}(2 r+1)=?
\end{gathered}
$$

To evaluate this using the fundamental theorem of sum calculus, we need to find U_{r} such that $\Delta U_{r}=2 r+1$:

$$
\begin{gathered}
U_{r}=r^{2} \Longrightarrow \Delta U_{r}=(r+1)^{2}-r^{2}=2 r+1 \\
\therefore \quad \sum_{r=0}^{n}(2 r+1)=\left.r^{2}\right|_{0} ^{n+1}=(n+1)^{2}-0^{2}=(n+1)^{2}
\end{gathered}
$$

Fundamental theorem of sum calculus

If $u_{r}=\Delta U_{r}$ then

$$
\begin{gathered}
\sum_{r=a}^{b} u_{r}=\left.U_{r}\right|_{a} ^{b+1}=U_{b+1}-U_{a} \\
\sum_{r=a}^{b} c^{r}=? \\
U_{r}=\frac{c^{r}}{c-1} \Longrightarrow \Delta U_{r}=\frac{c^{r+1}}{c-1}-\frac{c^{r}}{c-1}=c^{r} \\
\therefore \quad \sum_{r=a}^{b} c^{r}=\left.\frac{c^{r}}{c-1}\right|_{a} ^{b+1}=\frac{c^{b+1}-c^{a}}{c-1} \\
\text { In particular, } \quad \sum_{r=0}^{b} c^{r}=\frac{c^{b+1}-1}{c-1} \quad \text { (Geometric series) }
\end{gathered}
$$

Fundamental theorem of sum calculus

If $u_{r}=\Delta U_{r}$ then

$$
\begin{aligned}
\sum_{r=a}^{b} u_{r} & =\left.U_{r}\right|_{a} ^{b+1}=U_{b+1}-U_{a} \\
\sum_{r=a}^{b}\binom{r}{k-1} & =? \\
U_{r} & =\binom{r}{k} \\
\Delta U_{r} & =\binom{r+1}{k}-\binom{r}{k}=\binom{r}{k-1} \quad \text { (Pascal's rule) } \\
\therefore \sum_{r=a}^{b}\binom{r}{k-1} & =\left.\binom{r}{k}\right|_{a} ^{b+1}=\binom{b+1}{k}-\binom{a}{k}
\end{aligned}
$$

Fundamental theorem of sum calculus

If $u_{r}=\Delta U_{r}$ then

$$
\begin{gathered}
\sum_{r=a}^{b} u_{r}=\left.U_{r}\right|_{a} ^{b+1}=U_{b+1}-U_{a} \\
\sum_{r=0}^{n} r \underline{k}=? \\
U_{r}=\frac{r \underline{k+1}}{k+1} \Longrightarrow \Delta U_{r}=r^{\underline{k}} \\
\therefore \quad \sum_{r=0}^{n} r^{\underline{k}}=\left.\frac{r \frac{k+1}{k+1}}{l}\right|_{0} ^{n+1}=\frac{(n+1) \frac{k+1}{k+1}}{l}
\end{gathered}
$$

The continuous version of this is:

$$
\int_{0}^{n} x^{k} \mathrm{~d} x=\frac{n^{k+1}}{k+1}
$$

Sums of powers

We can use

$$
\sum_{r=0}^{n} r^{\underline{k}}=\frac{(n+1)^{\underline{k+1}}}{k+1}
$$

to compute sums of powers:

$$
\begin{aligned}
\sum_{r=0}^{n} r & =\sum_{r=0}^{n} r^{1}=\frac{(n+1)^{2}}{2} \\
& =\frac{(n+1) n}{2}
\end{aligned}
$$

Sums of powers

$$
\sum_{r=0}^{n} r^{\underline{k}}=\frac{(n+1) \frac{k+1}{k+1}}{k}
$$

What about the sum of squares?

$$
\begin{aligned}
r^{\underline{2}} & =r(r-1)=r^{2}-r \\
\therefore r^{2} & =r^{\underline{2}}+r^{\underline{1}} \\
\sum_{r=0}^{n} r^{2}=\sum_{r=0}^{n}\left(r^{\underline{2}}+r^{\underline{1}}\right) & =\frac{(n+1)^{\underline{3}}}{3}+\frac{(n+1)^{\underline{2}}}{2} \\
& =\frac{(n+1) n(n-1)}{3}+\frac{(n+1) n}{2} \\
& =\frac{n(n+1)(2 n+1)}{6}
\end{aligned}
$$

Sums of powers

Worksheet 4

$$
\begin{gathered}
\sum_{r=0}^{n} r^{\underline{k}}=\frac{(n+1)^{\underline{k+1}}}{k+1} \\
\sum_{r=0}^{n} r^{2}=\sum_{r=0}^{n}\left(r^{\underline{2}}+r^{\underline{1}}\right)=\frac{(n+1)^{\underline{3}}}{3}+\frac{(n+1)^{\underline{2}}}{2}
\end{gathered}
$$

Using this technique compute the sum of cubes:

$$
\sum_{r=0}^{n} r^{3}=?
$$

Sums of powers

$$
\begin{aligned}
& \quad \sum_{r=0}^{n} r^{\underline{k}}=\frac{(n+1)^{\underline{k+1}}}{k+1} \\
& r^{\underline{3}}=r(r-1)(r-2)=r^{3}-3 r^{2}+2 r \\
& r^{3}=r^{\underline{3}}+3 r^{2}-2 r=r^{\underline{3}}+3\left(r^{\underline{2}}+r^{\underline{1}}\right)-2 r^{\underline{1}} \\
& \therefore r^{3}=r^{\underline{3}}+3 r^{\underline{2}}+r^{\underline{1}} \\
& \sum_{r=0}^{n} r^{3}= \\
& =\sum_{r=0}^{n}\left(r^{\underline{3}}+3 r^{\underline{2}}+r^{\underline{1}}\right)=\frac{(n+1)^{\underline{4}}}{4}+\frac{3(n+1)^{\underline{3}}}{3}+\frac{(n+1)^{2}}{2} \\
& = \\
& =\frac{(n+1) n(n-1)(n-2)}{4}+\frac{3(n+1) n(n-1)}{3}+\frac{(n+1) n}{2} \\
&
\end{aligned}
$$

Sum by parts

The sum by parts formula for definite sums is:

$$
\sum_{r=a}^{b} u_{r} \Delta v_{r}=u_{b+1} v_{b+1}-u_{a} v_{a}-\sum_{r=a}^{b} v_{r+1} \Delta u_{r}
$$

For example, to evaluate this sum by parts:

$$
\sum_{r=0}^{n} 2 r 3^{r}
$$

we let $u_{r}=r$ and $\Delta v_{r}=2 \cdot 3^{r}$, then $\Delta u_{r}=1, v_{r}=3^{r}$ and:

$$
\begin{aligned}
\sum_{r=0}^{n} 2 r 3^{r} & =(n+1) 3^{n+1}-0 \cdot 3^{0}-\sum_{r=0}^{n} 3^{r+1} \cdot 1 \\
& =(n+1) 3^{n+1}-3 \sum_{r=0}^{n} 3^{r}=(n+1) 3^{n+1}-3 \frac{3^{n+1}-1}{3-1} \\
& =3^{n+1}\left(n-\frac{1}{2}\right)+\frac{3}{2}
\end{aligned}
$$

Sum by parts

Worksheet 5

The sum by parts formula for definite sums is:

$$
\sum_{r=a}^{b} u_{r} \Delta v_{r}=u_{b+1} v_{b+1}-u_{a} v_{a}-\sum_{r=a}^{b} v_{r+1} \Delta u_{r}
$$

Exercise: evaluate this sum by parts:

$$
\sum_{r=0}^{n} r 2^{r}
$$

Sum by parts

The sum by parts formula for definite sums is:

$$
\sum_{r=a}^{b} u_{r} \Delta v_{r}=u_{b+1} v_{b+1}-u_{a} v_{a}-\sum_{r=a}^{b} v_{r+1} \Delta u_{r}
$$

To evaluate this sum by parts:

$$
\sum_{r=0}^{n} r 2^{r}
$$

we let $u_{r}=r$ and $\Delta v_{r}=2^{r}$, then $\Delta u_{r}=1, v_{r}=2^{r}$ and:

$$
\begin{aligned}
\sum_{r=0}^{n} r 2^{r} & =(n+1) 2^{n+1}-0 \cdot 2^{0}-\sum_{r=0}^{n} 2^{r+1} \cdot 1 \\
& =(n+1) 2^{n+1}-2 \sum_{r=0}^{n} 2^{r} \\
& =(n+1) 2^{n+1}-2\left(2^{n+1}-1\right) \\
& =(n-1) 2^{n+1}+2
\end{aligned}
$$

Linear differential and difference equations

In this context the analogous to the derivative is the shift operator: $E u_{n}=u_{n+1}$. The method to solve linear equations is extremely similar:

Differential equation	Difference equation
$y^{\prime \prime}-5 y^{\prime}+6 y=0$	$u_{n+2}-5 u_{n+1}+6 u_{n}=0$
Assume $y=e^{m x}$	Assume $u_{n}=m^{n}$ and $m \neq 0$
then $y^{\prime}=m e^{m x}$	then $u_{n+1}=m^{n+1}$
and $y^{\prime \prime}=m^{2} e^{m x}$	and $u_{n+2}=m^{n+2}$
$\therefore m^{2} e^{m x}-5 m e^{m x}+6 e^{m x}=0$	$\therefore m^{n+2}-5 m^{n+1}+6 m^{n}=0$
\therefore the auxiliary equation is	\therefore the auxiliary equation is
$m^{2}-5 m+6=0$	$m^{2}-5 m+6=0$
$(m-2)(m-3)=0$	$(m-2)(m-3)=0$
\therefore the general solution is	\therefore the general solution is
$y=A e^{2 x}+B e^{3 x}$	$u_{n}=A \cdot 2^{n}+B \cdot 3^{n}$

where A and B are arbitrary constants.

Linear differential and difference equations with constant coefficients

Vector spaces are the subject of linear algebra.

Linear differential and difference equations

In both cases the general solution depends on the roots of the auxiliary equation:

AE's roots	Differential equation	Difference equation
Distinct	Assume $y=e^{m x}$	Assume $u_{n}=m^{n}$ and $m \neq 0$
$(\mathbb{R}$ or $\mathbb{C})$	$y=A e^{\alpha x}+B e^{\beta x}$	$u_{n}=A \alpha^{n}+B \beta^{n}$
$\alpha \neq \beta$		$u_{n}=(A n+B) \alpha^{n}$
Equal	$y=(A x+B) e^{\alpha x}$	
Complex $p \pm i q$	$y=e^{p x}(A \cos q x+B \sin q x)$	$u_{n}=\rho^{n}(A \cos n \theta+B \sin n \theta)$

Linear differential and difference equations

If the equation is not homogeneous:
general solution $=$ complimentary function + particular integral.

The boundary conditions for difference equations are usually some initial values.

In Further Maths you study the case of order 2. This can be generalized to higher orders.

Difference equations are also called recurrence relations. A sequence satisfying a linear recurrence with constant coefficients is called a constant-recursive sequence.

Linear difference equations

Example: Find a formula for the periodic sequence:

$$
\begin{aligned}
& 11,1,3,1,11,1,3,1, \ldots \\
& u_{n+4}=u_{n} \quad \text { with } u_{0}=11, u_{1}=1, u_{2}=3, u_{3}=1
\end{aligned}
$$

Assuming $u_{n}=m^{n}$ and $m \neq 0$, we get:

$$
\begin{aligned}
& m^{n+4}=m^{n} \\
& m^{4}=1 \\
& \therefore m_{1}=1, m_{2}=-1, m_{3}=i, m_{4}=-i \\
& \therefore u_{n}=A \cdot 1^{n}+B(-1)^{n}+C i^{n}+D(-i)^{n} \\
& A+B+C+D=11 \\
& A-B+C i-D i=1 \\
& A+B-C-D=3 \\
& A-B-C i+D i=1 \\
& \therefore u_{n}=4+3(-1)^{n}+2 i^{n}+2(-i)^{n}
\end{aligned}
$$

(Auxiliary equation)
(Roots of unity)
(General solution)

$$
\begin{array}{r}
\left(u_{0}=11\right) \\
\left(u_{1}=1\right) \\
\left(u_{2}=3\right) \\
\left(u_{3}=1\right)
\end{array}
$$

Linear difference equations

Assume $u_{n}=m^{n}$ and $m \neq 0$. If the auxiliary equation has distinct roots α and β then the general solution is:

$$
u_{n}=A \alpha^{n}+B \beta^{n}
$$

Exercise: Using this technique and assuming that the first term is u_{0}, find a formula for the periodic sequence:

$$
20,10,20,10,20,10, \ldots
$$

A very simple periodic sequence

Find a formula for the periodic sequence:

$$
\begin{gathered}
20,10,20,10,20,10, \ldots \\
u_{n+2}=u_{n} \quad \text { with } u_{0}=20, u_{1}=10
\end{gathered}
$$

Assuming $u_{n}=m^{n}$ and $n \neq 0$, we get $m^{n+2}=m^{n}$ and:

$$
\begin{aligned}
& m^{2}=1 \\
& \therefore \alpha=1, \beta=-1 \\
& \therefore u_{n}=A \cdot 1^{n}+B(-1)^{n}=A+B(-1)^{n} \\
& A+B=20 \\
& A-B=10
\end{aligned}
$$

(Auxiliary equation)
(Roots of unity)
(General solution)
$\therefore A=15, B=5$
$\therefore u_{n}=15+5(-1)^{n}$
In general, if the period is n we would have the n-th roots of 1 .

Linear differential and difference equations with constant coefficients

Worksheet 6

Assume $u_{n}=m^{n}$ and $m \neq 0$. If the auxiliary equation has distinct roots α and β then the general solution is:

$$
u_{n}=A \alpha^{n}+B \beta^{n} .
$$

If the roots are the same, α, then the general solution is:

$$
u_{n}=(A n+B) \alpha^{n} .
$$

Fibonacci sequence

$$
\begin{aligned}
& u_{n+2}=u_{n+1}+u_{n} \\
& u_{0}=0, u_{1}=1
\end{aligned}
$$

Assuming $u_{n}=m^{n}$ and $n \neq 0$, we get:

$$
\begin{aligned}
& m^{n+2}=m^{n+1}+m^{n} \\
& m^{2}=m+1
\end{aligned}
$$

(Auxiliary equation)

$$
\therefore \alpha=\frac{1+\sqrt{5}}{2}, \beta=\frac{1-\sqrt{5}}{2} \quad \text { (Golden ratio and its conjugate) }
$$

$$
\therefore u_{n}=A\left(\frac{1+\sqrt{5}}{2}\right)^{n}+B\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

(General solution)

$$
A+B=0
$$

$$
\left(u_{0}=0\right)
$$

$$
A \frac{1+\sqrt{5}}{2}+B \frac{1-\sqrt{5}}{2}=1, \quad A-B=\frac{2}{\sqrt{5}}
$$

$$
\left(u_{1}=1\right)
$$

$$
\therefore u_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

This closed-form expression is known as Binet's formula.

Is it all a coincidence?

A more general definition of a difference of a function f is:

$$
\Delta_{h} f(x)=f(x+h)-f(x)
$$

where h is a positive number.
The difference that we have studied is the particular case when $h=1$:

$$
\Delta u_{n}=\Delta u(n)=\Delta_{1} u(n)
$$

Using Δ_{h} we can rewrite the definition of the derivative like this:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\Delta_{h} f(x)}{h}
$$

This equality explains why the properties of differences and derivatives are so similar. There is an analogous relationship between sums and integrals, just check the definition of Riemann integrals.

Applications and discrete mathematics

Numerical calculus: discretize differential equations to solve them numerically. For example, Euler's method consists of approximating a function by a sequence defined by a recurrence relation.

Computer science: recurrence relations are used to analyze recursive algorithms.

Many branches of mathematics have discrete and continuous versions: probability distributions, Fourier transforms and dynamical systems among many others.

The appearance of digital, as opposed to analog, computers in the $20^{\text {th }}$ century increased the importance of discrete mathematics.

Summary

Continuous calculus Discrete calculusFunctionsSequences

Derivative

Integral
Fundamental theorem of calculus

Differential equations
$e^{m x}$

Laplace transform

Difference
$n^{\underline{k}}$

Sum

Method of differences

Difference equations (Recurrence relations) m^{n}

Generating function

References

- George Boole. Calculus of Finite Differences. 1860. The first textbook on the subject. On page 164 it describes the discrete version of the integrating factor method to solve first order differential equations.
- Murray R. Spiegel. Calculus of Finite Differences and Difference Equations. Schaum's outlines, 1971. It has a detailed description of general discrete calculus, that is in terms of h.
- Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics: A Foundation for Computer Science. 1994. In the title, by Concrete they mean a blend of CONtinuous and disCRETE!
- Art of Problem Solving, Why Discrete Math Is Important.

References

- A. I. Markushevich. Recursion sequences. Mir, 1975. Part of the great Soviet collection Little Mathematics Library. Available at urss.ru.
- Robert Ghrist, University of Pennsylvania. Discrete Calculus videos: Sequences I, Sequences II, Differences and Discrete Calculus.
- Richard Feynman, Feynman lectures. California Institute of Technology. Newtons Laws of Dynamics. It includes nice examples of discretization of differential equations.
- Wikipedia: Finite difference, Indefinite sum, Recurrence relation, Linear difference equation, Constant-recursive sequence.
- You can find this presentation at gustavolau.com.

