

Asociación Venezolana de Competencias Matemáticas ACM

OLIMPÍADA JUVENIL DE MATEMÁTICA Prueba Nacional — 9 de junio de 2017 Tercer Año

Apellidos y Nombres:				Nº de	e Cédula:	
Teléfono(s):	Dirección de correo electrónico:					
Instituto:		Ciudad:		Esta	Estado:	
(No escriba en esta línea)	Puntos: 1	2	3	4	Total:	
-						

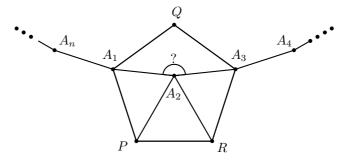
Todas las respuestas deben justificarse. Duración de la prueba: 3 horas y media Valor de cada problema: 7 puntos

Problema 1. En la pizarra está escrito el número 1. Ana y Beto juegan alternadamente, comenzando por Ana, de la manera siguiente: cada jugador, en su turno, debe sustituir el número x escrito en la pizarra por un entero y tal que $x < y \le 3x$. El primer jugador que escriba el 1000 o un número mayor, gana. Determine si alguno de los jugadores puede asegurarse la victoria, y explique cómo debe jugar para lograrlo.

Problema 2. Sea $a_1, a_2, a_3,...$ una sucesión de números enteros tal que cada término a partir del tercero es igual a la suma de los dos prededentes, es decir que $a_3 = a_1 + a_2$, $a_4 = a_2 + a_3$, $a_5 = a_3 + a_4$, etc. Si $a_{10} = 2017$ y $a_4 = 117$, ¿cuál es el valor de a_1 ?

Problema 3. Digamos que un entero positivo es *chévere* si los restos que se obtienen al dividirlo entre 1, 2, 3, 4, 5, 6, 7, 8 y 9 son todos diferentes. ¿Cuántos enteros *chévere* hay entre 1 y 100000?

Problema 4. En la figura, PA_1QA_3R es un pentágono regular y PA_2R es un triángulo equilátero.



- (a) Calcule la medida del ángulo $\angle A_1 A_2 A_3$.
- (b) Si se toma A_4 de modo que $A_3A_4 = A_2A_3$ y $\angle A_2A_3A_4 = \angle A_1A_2A_3$, y luego A_5 (no visible en la figura) de modo que $A_4A_5 = A_3A_4$ y $\angle A_3A_4A_5 = \angle A_2A_3A_4$, y así sucesivamente, se forma un polígono regular $A_1A_2A_3A_4 \dots A_n$ que termina cerrando en A_1 . Determine el valor de n, es decir el número de vértices de ese polígono.

Asociación Venezolana de Competencias Matemáticas

UCV. Facultad de Ciencias. Escuela de Matemáticas. Ofic. 331. Los Chaguaramos. Caracas 1020. Venezuela. RIF J-30755794-0. Telefax 212 605 1512. Página web: www.acm.ciens.ucv.ve