
The play within the play

Computer Science Masterclass

Gustavo Lau

Velázquez,
Las Meninas

Self-reference - Mise en abyme

Self-reference

Russian or Matryoshka dolls

Self-reference

en.wikipedia.org/wiki/Droste_effect

Self-reference

Orson Welles, Citizen Kane

Self-reference

Google “recursive painting”

Self-reference

Wil Wheaton (Big Bang Theory), recursive t shirt

Self-reference

Google “simpsons recursion gif”

Self-reference

Model Villages of Bourton-on-the-Water, Gloucestershire

Self-reference

Google “recursive photo” images.
BTW, if you google recursion you get a recursive answer.

Worksheet 1: Self-reference

Consider the following:

12 - 1 + 41 = 41 is a prime

22 - 2 + 41 = 43 is a prime
32 - 3 + 41 = 47 is a prime
…

302 - 30 + 41 = 911, 911 is a prime

What could we conclude?

n2 - n + 41 is a prime for all n

But 412 - 41 + 41 = 412 is not prime.

Therefore that was not a conclusion, it was just a
conjecture and it is false.

Induction

Consider the following equalities:

1 = 12

1 + 3 = 22

1 + 3 + 5 = 32

1 + 3 + 5 + 7 = 42

What could we conjecture?

That the sum of the first n odd numbers adds up to the
n-th square number.

Mathematical induction

What is the formula for the sequence of the odd numbers?

Or how do we write the n-th odd number algebraically?

 n n-th odd number

 1 1

 2 3

 3 5

 …

 n

Mathematical induction

2n - 1

Consider the following equalities:

1 = 12

1 + 3 = 22

1 + 3 + 5 = 32

1 + 3 + 5 + 7 = 42

How do we write our conjecture algebraically?

Sum of the first n odd numbers

 1 + 3 + … + (2n-1)

let’s call this statement S(n).

How can we prove that S(n) is true for all n?

Mathematical induction

 n-th square number

= n2

How can we prove that S(n) is true for all n?

We know that S(1), S(2), S(3) and S(4) are true.

We will prove that:

S(4) ⇒ S(5), if S(4) is true then S(5) is also true

S(5) ⇒ S(6), if S(5) then S(6)

S(6) ⇒ S(7), S(6) implies S(7)

In general we need to prove S(k) ⇒ S(k+1) so that we

get a domino effect:

Mathematical induction

How can we prove that S(n) is true for all n?

Let’s assume that S(k) is true for a particular k:

1 + 3 + … + (2k-1) = k2

If we add the next odd number, 2k+1, to both sides we
get:

1 + 3 + … + (2k-1) + (2k+1) = k2 + 2k + 1

1 + 3 + … + (2k-1) + (2(k+1)-1) = (k + 1)2

Then S(k+1) is true.

Therefore we have proved that if S(k) is true then
S(k+1) is also true, that is S(k) ⇒ S(k+1).

Mathematical induction

To prove by mathematical induction that a statement
S(n) is true for all natural numbers you prove that:

1. S(1), or S(0), is true. This is called the base case.

2. If S(k) is true then S(k+1) is also true. This is called
the inductive step.

Mathematical induction

If you take Further Maths A-level you’ll study this there.

Computer Science recursion

Wikipedia: Recursion in computer science is a
method where the solution to a problem
depends on solutions to smaller instances of
the same problem. The approach can be applied
to many types of problems, and recursion is one
of the central ideas of computer science.

How is mathematical induction related to
computer science recursion?

Maths induction and CS recursion

Mathematical induction:

From small case to bigger case.

Computer Science recursion:

From big case to smaller case.

2k+1

2k-1

.

.

.

5

3

1

2k+1

2k-1

.

.

.

5

3

1

Worksheet 2
Draughts path counting

8 end

7

6

5

4

3

2

1

a b c d e f g h

Draughts path counting

Maths problem solving principle:

Can you think of a smaller similar problem?

4 end

3

2

1

a b c d

Draughts path counting

Maths problem solving principle:

Can you think of the smallest case?

More in general, can you think of an extreme case?

end

1

end

1

We could call any of them the base case.

How many subsets does the
empty set have?

2

Draughts path counting
Maths problem solving technique:

Can you think of the next smallest problem?

Divide and conquer principle:

Can you decompose the problem into similar
smaller problems?

end end

end end1 1

2

1 1

We could call this the inductive step.

x y

x + y

x y

Draughts path counting

Now let’s look at the original problem:

Can you decompose it into similar smaller problems?

8 end

7

6

5

4

3

2

1

a b c d e f g h

Draughts path counting

Now let’s look at the original problem:

Can you decompose it into similar smaller problems?

8 end

7 end end

6

5

4

3

2

1

a b c d e f g h

Draughts path counting

Now let’s look at the original problem:

Can you decompose it into similar smaller problems?

8 end

7 end end

6 end end end

5

4

3

2

1

a b c d e f g h

Draughts path counting

Now let’s look at the original problem:

Can you decompose it into similar smaller problems?

8 end

7 end end

6 end end end

5 end end end

4

3

2

1

a b c d e f g h

Draughts path counting

Now let’s look at the original problem:

Can you decompose it into similar smaller problems?

8 end

7 end end

6 end end end

5 end end end

4 end end end end

3

2

1

a b c d e f g h

Draughts path counting

Now let’s look at the original problem:

Can you decompose it into similar smaller problems?

8 end

7 end end

6 end end end

5 end end end

4 end end end end

3 end end end

2

1

a b c d e f g h

Draughts path counting

Now let’s look at the original problem:

Can you decompose it into similar smaller problems?

8 end

7 end end

6 end end end

5 end end end

4 end end end end

3 end end end

2 end end

1

a b c d e f g h

Draughts path counting

Now let’s look at the original problem:

Can you decompose it into similar smaller problems?

8 end

7 end end

6 end end end

5 end end end

4 end end end end

3 end end end

2 1 1

1

a b c d e f g h

Draughts path counting

Now let’s look at the original problem:

Can you decompose it into similar smaller problems?

8 end

7 end end

6 end end end

5 end end end

4 end end end end

3 1 2 1

2 1 1

1

a b c d e f g h

Draughts path counting

Now let’s look at the original problem:

Can you decompose it into similar smaller problems?

8 end

7 end end

6 end end end

5 end end end

4 1 3 3 1

3 1 2 1

2 1 1

1

a b c d e f g h

Draughts path counting

Now let’s look at the original problem:

Can you decompose it into similar smaller problems?

8 end

7 end end

6 end end end

5 4 6 4

4 1 3 3 1

3 1 2 1

2 1 1

1

a b c d e f g h

Draughts path counting

Now let’s look at the original problem:

Can you decompose it into similar smaller problems?

8 end

7 end end

6 4 10 10

5 4 6 4

4 1 3 3 1

3 1 2 1

2 1 1

1

a b c d e f g h

Draughts path counting

Now let’s look at the original problem:

Can you decompose it into similar smaller problems?

8 end

7 14 20

6 4 10 10

5 4 6 4

4 1 3 3 1

3 1 2 1

2 1 1

1

a b c d e f g h

Draughts path counting

Now let’s look at the original problem:

Can you decompose it into similar smaller problems?

8 34

7 14 20

6 4 10 10

5 4 6 4

4 1 3 3 1

3 1 2 1

2 1 1

1

a b c d e f g h

Draughts path counting

This is a more interesting recursion because the
problem decomposes not just into one but into
two smaller problems.

Instead of a simple domino effect, we could say
that we get a chain reaction:

Recursive play

Bjork, Bachelorette
directed by Michel Gondry:

https://www.youtube.com/watch?v=pzUB1D5XQ_w

https://www.youtube.com/watch?v=pzUB1D5XQ_w
https://www.youtube.com/watch?v=pzUB1D5XQ_w
https://www.youtube.com/watch?v=pzUB1D5XQ_w

Recursive play

Wikipedia: Recursion is the process a procedure
goes through when one of the steps of the
procedure involves invoking the procedure itself.
A procedure that goes through recursion is said
to be 'recursive'.

Recursive play

How would we write a play like Bachelorette
that has as many recursive levels as the stage
capacity allows?

Bachelorette

1) Things done before the
play within the play

2) The play within the play

3) Things done after the play
within the play

But how to specify how many
times to do it?

Bachelorette(n)

 If n > 0

 Things done before play

 Bachelorette(n-1)

 Things done after play

Bachelorette(Stage capacity)

Recursive play

Wikipedia: To understand recursion, one must
recognize the distinction between a procedure and the
running of a procedure.

A procedure is a set of steps based on a set of rules.
The running of a procedure involves actually following
the rules and performing the steps. An analogy: a
procedure is like a written recipe; running a procedure
is like actually preparing the meal.

An algorithm is like a play; running an algorithm is like
a performance.

Recursive play

Bachelorette(n)

 If n > 0

 Things done before the play within the play

 Bachelorette(n-1)

 Things done after the play within the play

Bachelorette(4)

B(4)

 If 4>0

 Before

 B(3)

 After

B(3)

 If 3>0

 Before

 B(2)

 After

B(2)

 If 2>0

 Before

 B(1)

 After

B(1)

 If 1>0

 Before

 B(0)

 After

B(0)

 If 0>0

Worksheet 3
Recursive play writing

Bachelorette(n)

 If n > 0

 Things done before the play within the play

 Bachelorette(n-1)

 Things done after the play within the play

Bachelorette(4)

B(4)

 If 4>0

 Before

 B(3)

 After

B(3)

 If 3>0

 Before

 B(2)

 After

B(2)

 If 2>0

 Before

 B(1)

 After

B(1)

 If 1>0

 Before

 B(0)

 After

B(0)

 If 0>0

Recursive play

B(n)

 If n > 0

 Write n in the blackboard

 B(n-1)

B(4)

B(4)

 If 4>0

 Write 4

 B(3)

4

3

2

1

B(3)

 If 3>0

 Write 3

 B(2)

B(2)

 If 2>0

 Write 2

 B(1)

B(1)

 If 1>0

 Write 1

 B(0)

B(0)

 If 0>0

Recursive play

B(n)

 If n > 0

 B(n-1)

 Write n in the blackboard

B(4)

B(4)

 If 4>0

 B(3)

 Write 4

B(3)

 If 3>0

 B(2)

 Write 3

B(2)

 If 2>0

 B(1)

 Write 2

B(1)

 If 1>0

 B(0)

 Write 1

B(0)

 If 0>0

1

2

3

4

Recursive play

B(n)

 If n > 0

 Write n in the blackboard

 B(n-1)

 Write n in the blackboard

B(4)

B(4)

 If 4>0

 Write 4

 B(3)

 Write 4

4

3

2

1

1

2

3

4

B(3)

 If 3>0

 Write 3

 B(2)

 Write 3

B(2)

 If 2>0

 Write 2

 B(1)

 Write 2

B(1)

 If 1>0

 Write 1

 B(0)

 Write 1

B(0)

 If 0>0

Algorithms

In Computer Science we don’t write plays we write
programs, but before programs we write algorithms.

A computer program has a lot of details and a syntax more
suited to machines than to humans. Before writing that it
is a very good practice to write down how the program is
going to solve the problem. That is what is called the
algorithm.

Algorithms

The word algorithm is derived from the name of
Muḥammad ibn Mūsā al-Khwārizmī,
a Persian mathematician.

He is considered one of the “fathers of algebra” because in
820 AD he wrote arguably the first algebra book, Al-Kitab
al-Jabr wa-l-Muqabala.

The word algebra is derived from the word al-Jabr in the
title of that book.

Worksheet 4
Algorithms

B(n)

 If n > 0

 Write n in the blackboard

 B(n-1)

 Write n in the blackboard

B(4)

B(4)

 If 4>0

 Write 4

 B(3)

 Write 4

4

3

2

1

1

2

3

4

B(3)

 If 3>0

 Write 3

 B(2)

 Write 3

B(2)

 If 2>0

 Write 2

 B(1)

 Write 2

B(1)

 If 1>0

 Write 1

 B(0)

 Write 1

B(0)

 If 0>0

Algorithms

P(n)

 If n = 1

 Write *

 else

 P(n-1)

 Write * n times

 P(n-1)

P(1)

P(1)

 If 1 = 1

 Write *

*

Algorithms
P(n)

 If n = 1

 Write *

 else

 P(n-1)

 Write * n times

 P(n-1)

P(2)

P(2)

 If 2 = 1

 else

 P(1)

 Write * 2 times

 P(1)

*
**
*

P(1)

 If 1 = 1

 Write *

Algorithms
P(n)

 If n = 1

 Write *

 else

 P(n-1)

 Write * n times

 P(n-1)

P(3)

P(3)

 If 3 = 1

 else

 P(2)

 Write * 3 times

 P(2)

*
**
*

*
**
*

P(2)

Algorithms
P(n)

 If n = 1

 Write *

 else

 P(n-1)

 Write * n times

 P(n-1)

P(4)

P(4)

 If 4 = 1

 else

 P(3)

 Write * 4 times

 P(3)

*
**
*

*
**
*

*
**
*

*
**
*

P(3)

Rise of the Planet of the Apes

https://www.youtube.com/watch?v=5-9d0qYk2s4

Directed by Rupert Wyatt. Twentieth
Century Fox, 2011:

https://www.youtube.com/watch?v=5-9d0qYk2s4
https://www.youtube.com/watch?v=5-9d0qYk2s4
https://www.youtube.com/watch?v=5-9d0qYk2s4
https://www.youtube.com/watch?v=5-9d0qYk2s4

The legend:

In an Indian temple there is a large room with three posts in it
surrounded by 64 golden disks. Brahmin priests, acting out the
command of an ancient prophecy, have been moving these disks.

According to the legend, when the last move of the puzzle will be
completed, the world will end.

If the legend were true, and if the priests were able to move disks
at a rate of one per second, using the smallest number of moves, it
would take them roughly 585 billion years or more than 40 times
the age of the universe.

Tower of Hanoi

Break - Worksheet 5
Tower of Hanoi

The objective: to move the entire stack from rod 1 to rod 3.

The rules:

a. Only one disk can be moved at a time.

b. Each move consists of taking the upper disk from one of the
stacks and placing it on top of another stack i.e. a disk can only
be moved if it is the uppermost disk on a stack.

c. No disk may be placed on top of a smaller disk.

Tower of Hanoi

Can you think of the smallest case?

What is the size of the problem?

 The number of disks.

Therefore the smallest size of the problem is 1,

just one disk to move from stack 1 to stack 3.

The solution is trivial: move the disk from stack 1
to stack 3.

Tower of Hanoi

 Stack 1 Stack 2 Stack 3

To move 4 disks from stack 1
to stack 3:

Divide and conquer principle:

Can you decompose the problem into similar smaller problems?

Tower of Hanoi

 Stack 1 Stack 2 Stack 3

 Stack 1 Stack 2 Stack 3

To move 4 disks from stack 1
to stack 3:

a) Use the solution for 3 to
move 3 disks from stack 1 to
stack 2 (smaller problem)

Divide and conquer principle:

Can you decompose the problem into similar smaller problems?

Tower of Hanoi

 Stack 1 Stack 2 Stack 3

 Stack 1 Stack 2 Stack 3

 Stack 1 Stack 2 Stack 3

To move 4 disks from stack 1
to stack 3:

a) Use the solution for 3 to
move 3 disks from stack 1 to
stack 2 (smaller problem)

b) Move the biggest disk from
stack 1 to stack 3

Divide and conquer principle:

Can you decompose the problem into similar smaller problems?

Tower of Hanoi

 Stack 1 Stack 2 Stack 3

 Stack 1 Stack 2 Stack 3

 Stack 1 Stack 2 Stack 3

 Stack 1 Stack 2 Stack 3

To move 4 disks from stack 1
to stack 3:

a) Use the solution for 3 to
move 3 disks from stack 1 to
stack 2 (smaller problem)

b) Move the biggest disk from
stack 1 to stack 3

c) Use the solution for 3 to
move 3 disks from stack 2 to
stack 3 (smaller problem)

Divide and conquer principle:

Can you decompose the problem into similar smaller problems?

Hanoi(n, origin, destination)

 If n = 1

 Move disk from origin to destination

 else

 Hanoi(n-1, origin, other stack)

 Move disk from origin to destination

 Hanoi(n-1, other stack, destination)

How to compute the number of the other stack as a function of
origin number and destination number?

 The stacks, 1, 2 and 3, add up to 6.

 The formula is: other stack = 6 – origin – destination.

Tower of Hanoi

Hanoi(n, origin, destination)

 If n = 1

 Move disk from origin to destination

 else

 Hanoi(n-1, origin, 6 – origin – destination)

 Move disk from origin to destination

 Hanoi(n-1, 6 – origin – destination, destination)

def hanoi(n,origin,destination):

 if n == 1:

 print "move disk from", origin, "to", destination

 else:

 hanoi(n-1,origin,6-origin-destination)

 print "move disk from", origin, "to", destination

 hanoi(n-1,6-origin-destination,destination)

Tower of Hanoi
Algorithm:

Python
program:

Tower of Hanoi

Try it the Python program:
Please login to Google drive
 Username: theplaywithintheplay
 Password: gladesmore2017
Go to Google Drive and download the file
50_hanoi.py, open it and press F5 to run it.
To call the function type for example: hanoi(3,1,3)

You can press Arrow Up or Alt-p one or more
times to bring a previous command, then you can
edit it and run it.

A generalization of mathematical induction, called
structural induction, is used in Computer Science. It can
have many base cases and many inductive steps.

Maths induction and CS recursion

Mathematical induction:

From small case to bigger case.

Computer Science recursion:

From big case to smaller case.

2k+1

2k-1

.

.

.

5

3

1

2k+1

2k-1

.

.

.

5

3

1

Turtle programming

Seymour Papert et al, Logo Turtle (1969)

Turtle programming

pythonturtle.org

Turtle programming

pythonturtle.org

Turtle programming

Python Shell and Python’s turtle library

Some of the instructions that you can give to the turtle are:

 forward(distance) backward(distance)

 left(angle) right(angle)

 penup() pendown()

 if then else speed(n)

 def

Demo

Turtle programming

Worksheet 6
Turtle programming

Some of the instructions that you can give to the turtle are:

 forward(distance) backward(distance)

 left(angle) right(angle)

 penup() pendown()

 if then else speed(n)

 def

Try it: In the window called Shell type “import turtle”,
return and for example turtle.forward(100), turtle.left(90).

Worksheet 6
Turtle programming

 Solution to 6.1): Use Ctrl-O to open the file
61_pol_solution.py and run it (F5). Advice: close the
window of the previous file.

Solution to 6.2): Try pol(10,6,60)

Solution to 6.3): Open the file
63_ManyPolygons_solution.py and run it (F5).

Before running ManyPolygons2(100,8) instead of
turtle.reset() run rs(), that resets the turtle and makes it
move at its maximum speed.

Worksheet 7
Turtle programming

 Solution to 7.1): 71_polback.py

def polBack(length, angle, n):

 if n > 0:

 turtle.forward(length)

 turtle.left(angle)

 polBack(length, angle, n-1)

 turtle.right(angle)

 turtle.backward(length)

Worksheet 7
Turtle programming

 Solution to 7.2): File 72_spiral_solution.py.

Solution to 7.3): File 73_a_b_figures_solution.py.

Run the examples there that are commented out (lines that
start with #).

Self-similarity

A self-similar object is exactly or
approximately similar to a part of itself.

Self-similarity

Spirals are the simplest self-similar objects.

Self-similarity

Pink Floyd, Ummagumma

Self-similarity

Taken from www.andrewlipson.com

http://www.andrewlipson.com/

Fractals

The Mandelbrot set:
https://vimeo.com/6644398

https://vimeo.com/6644398
https://vimeo.com/6644398

Fractals - Koch curve variant

We can obtain a Koch curve variant with the following
procedure.

Start with a segment:

and replace it with five segments of 1/3 of the original size:

and replace each of them with four segments in the same way:

and then repeat this process again and again.

Fractals - Koch curve variant

Here is a description of this curve using a L-system (taken from
http://en.wikipedia.org/wiki/L-system):

start: F

rule: F → F+F−F−F+F

Here, F means "draw forward", + means "turn left 90°",

and − means "turn right 90°". The shrinking factor is 1/3.

n = 0:

F

n = 1:

F+F−F−F+F

n = 2:

F+F−F−F+F + F+F−F−F+F − F+F−F−F+F − F+F−F−F+F + F+F−F−F+F

http://en.wikipedia.org/wiki/L-system
http://en.wikipedia.org/wiki/L-system
http://en.wikipedia.org/wiki/L-system
http://en.wikipedia.org/wiki/L-system

Fractals - Koch curve variant

start: F

rule: F → F+F−F−F+F

F means “draw forward”

+ means “turn left 90°”

− means “turn right 90°”

Shrinking factor = 1/3

Here is a program that draws this curve:
def koch(length, n):
 if n == 0:
 turtle.forward(length)
 else:
 koch(length/3,n-1)
 turtle.left(90)
 koch(length/3,n-1)
 turtle.right(90)
 koch(length/3,n-1)
 turtle.right(90)
 koch(length/3,n-1)
 turtle.left(90)
 koch(length/3,n-1)

Worksheet 8
Drawing fractals

Koch snowflake

Fractals - Koch snowflake

Here is a description of this curve using a L-system (taken from
http://en.wikipedia.org/wiki/Koch_snowflake):

start: F

rule: F → F+F−F+F

Here, F means "draw forward", + means “turn left 60°”

 and − means “turn right 120°”. The shrinking factor is 1/3.

n = 0:

F

n = 1:

F+F−F+F

n = 2:

F+F−F+F + F+F−F+F − F+F−F+F + F+F−F+F

http://en.wikipedia.org/wiki/Koch_snowflake
http://en.wikipedia.org/wiki/Koch_snowflake

Fractals - Koch snowflake

start: F

rule: F → F+F−F+F

F means “draw forward”

+ means “turn left 60°”

− means “turn right 120°”

Shrinking factor = 1/3

Here is a program that draws this curve:
def KochSnowflake1 (length, n):
 if n == 0:
 turtle.forward(length)
 else:
 koch(length/3,n-1)
 turtle.left(60)
 koch(length/3,n-1)
 turtle.right(120)
 koch(length/3,n-1)
 turtle.left(60)
 koch(length/3,n-1)

Fractals - Sierpinski triangle

Fractals

The Sierpinski triangle

Fractals – Sierpinski triangle

start: A

rules: A → B−A−B

 B → A+B+A

A and B both mean “draw
forward”

+ means “turn left 60°”

− means “turn right 60°”

Shrinking factor = 1/2

Here is a program that draws this curve:
def sierpinski(variable, length, n):
 if n == 0:
 turtle.forward(length)
 else:
 if variable == 'A':
 sierpinski('B',length/2, n-1)
 turtle.right(60)
 sierpinski('A',length/2, n-1)
 turtle.right(60)
 sierpinski('B',length/2, n-1)
 else:
 sierpinski('A',length/2, n-1)
 turtle.left(60)
 sierpinski('B',length/2, n-1)
 turtle.left(60)
 sierpinski('A',length/2, n-1)

Open the file 80_Sierpinski.py and run the examples that
are commented out (lines that start with #).

If you have time open also the file 90_Dragon.py and run
the examples there.

Fractals – Sierpinski triangle

Fractals – Dragon curve

Starting from a base segment, replace each segment by 2 segments
with a right angle and with a rotation of 45° alternatively to the
right and to the left:

Fractals – Dragon curve

start: FX

rules: X → X+YF

 Y → FX-Y

F means "draw forward”

- means "turn left 90°“

+ means "turn right 90°".

Here is a program that draws this curve:

def dragon(variable, length, n):

 if n == 0:

 turtle.forward(length)

 else:

 if variable == 'X':

 dragon('X',length,n-1)

 turtle.right(90)

 dragon('Y',length,n-1)

 turtle.forward(length)

 else:

 turtle.forward(length)

 dragon('X',length,n-1)

 turtle.left(90)

 dragon('Y',length,n-1)

Open the file 90_Dragon.py and run the examples there.

Fractals – Dragon curve

Recursion vs. Iteration

Recursion

def pol(length, angle, n):
 if n > 0:
 turtle.forward(length)
 turtle.left(angle)
 pol(length, angle, n-1)

Iteration

def pol(length, angle, n):
 for i in range(n):
 turtle.forward(length)
 turtle.left(angle)

Example of range:
 range(5)=[0,1,2,3,4]

Whatever you can do with recursion you can do with iteration and the other way around.
Usually iteration is used instead of single recursion but not instead of multiple recursion.
Note: to compute the Fibonacci numbers with recursion can be very inefficient.
Some Artificial Intelligence programming languages, like Lisp and Prolog, use recursion heavily.
They belong to different programming paradigms than the most commonly used languages.
The language that we use influences the way we think.

Douglas Hofstadter,
 Gödel, Escher, Bach:

an Eternal Golden Braid
(GEB)

Self-reference,
recursion,

self-reproduction
and much more.

From Gödel, Escher, Bach

From Gödel, Escher, Bach
The sentence

 "The sentence

 "The sentence

 "The sentence

 …

 …

 etc,.,etc.

 …

 ….

 is infinitely long"

 is infinitely long"

 is infinitely long"

is infinitely long.

M. C. Escher, Circle Limit III

M. C. Escher, Drawing Hands

M. C. Escher, Relativity

Relativity in Lego from www.andrewlipson.com

http://www.andrewlipson.com/

Optical feedback
from

Gödel, Escher, Bach

Optical feedback
from

Gödel, Escher, Bach

Self-reference - Optical feedback

I need two volunteers…

That’s all!

Please take a copy of the answers.

Thank you.

