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Self-reference - Mise en abyme 



Self-reference 

Russian or Matryoshka dolls 



Self-reference 

en.wikipedia.org/wiki/Droste_effect 



Self-reference 

Orson Welles, Citizen Kane 



Self-reference 

Google “recursive painting” 



Self-reference 

Wil Wheaton (Big Bang Theory), recursive t shirt 



Self-reference 

Google “simpsons recursion gif” 



Self-reference 

Model Villages of Bourton-on-the-Water, Gloucestershire 



Self-reference 

Google “recursive photo” images.  
BTW, if you google recursion you get a recursive answer. 



Worksheet 1: Self-reference 



Consider the following: 

12 - 1 + 41 = 41 is a prime 

22 - 2 + 41 = 43 is a prime 
32 - 3 + 41 = 47 is a prime 
… 

302 - 30 + 41 = 911, 911 is a prime 

What could we conclude? 

n2 - n + 41 is a prime for all n 

But 412 - 41 + 41 = 412 is not prime.  

Therefore that was not a conclusion, it was just a 
conjecture and it is false.  

Induction 



Consider the following equalities: 

1 = 12 

1 + 3 = 22 

1 + 3 + 5 = 32 

1 + 3 + 5 + 7 = 42 

What could we conjecture? 

That the sum of the first n odd numbers adds up to the 
n-th square number. 

Mathematical induction 



What is the formula for the sequence of the odd numbers? 

Or how do we write the n-th odd number algebraically? 

 n n-th odd number 

 1  1 

 2  3 

 3  5 

 … 

 n   

Mathematical induction 

2n - 1 



Consider the following equalities: 

1 = 12 

1 + 3 = 22 

1 + 3 + 5 = 32 

1 + 3 + 5 + 7 = 42 

How do we write our conjecture algebraically? 

Sum of the first n odd numbers 

  1 + 3 + … + (2n-1)  

let’s call this statement S(n). 

How can we prove that S(n) is true for all n? 

Mathematical induction 

    n-th square number 

=  n2  



How can we prove that S(n) is true for all n? 

We know that S(1), S(2), S(3) and S(4) are true. 

We will prove that: 

S(4) ⇒ S(5), if S(4) is true then S(5) is also true 

S(5) ⇒ S(6), if S(5) then S(6) 

S(6) ⇒ S(7), S(6) implies S(7) 

In general we need to prove S(k) ⇒ S(k+1) so that we 

get a domino effect: 

Mathematical induction 



How can we prove that S(n) is true for all n? 

Let’s assume that S(k) is true for a particular k:  

1 + 3 + … + (2k-1) = k2  

If we add the next odd number, 2k+1, to both sides we 
get: 

1 + 3 + … + (2k-1) + (2k+1) = k2 + 2k + 1 

1 + 3 + … + (2k-1) + (2(k+1)-1) = (k + 1)2 

Then S(k+1) is true. 

Therefore we have proved that if S(k) is true then 
S(k+1) is also true, that is S(k) ⇒ S(k+1). 

Mathematical induction 



To prove by mathematical induction that a statement 
S(n) is true for all natural numbers you prove that: 

1. S(1), or S(0), is true. This is called the base case. 

2. If S(k) is true then S(k+1) is also true. This is called 
the inductive step. 

Mathematical induction 

If you take Further Maths A-level you’ll study this there. 



Computer Science recursion 

Wikipedia: Recursion in computer science is a 
method where the solution to a problem 
depends on solutions to smaller instances of 
the same problem. The approach can be applied 
to many types of problems, and recursion is one 
of the central ideas of computer science. 



How is mathematical induction related to 
computer science recursion? 

Maths induction and CS recursion 

Mathematical induction: 

From small case to bigger case. 

Computer Science recursion: 

From big case to smaller case. 
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Worksheet 2 
Draughts path counting 

 
8 end
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a b c d e f g h



Draughts path counting 

Maths problem solving principle: 

Can you think of a smaller similar problem? 

4 end

3

2

1

a b c d



Draughts path counting 

Maths problem solving principle: 

Can you think of the smallest case? 

More in general, can you think of an extreme case? 

end

1

end

1

We could call any of them the base case. 

How many subsets does the 
empty set have?  



2

Draughts path counting 
Maths problem solving technique: 

Can you think of the next smallest problem? 

Divide and conquer principle: 

Can you decompose the problem into similar 
smaller problems? 

end end

end end1 1

2

1 1

We could call this the inductive step. 

x y

x + y

x y



Draughts path counting 

Now let’s look at the original problem: 

Can you decompose it into similar smaller problems? 

8 end
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a b c d e f g h



Draughts path counting 

Now let’s look at the original problem: 

Can you decompose it into similar smaller problems? 

8 end

7 end end
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a b c d e f g h



Draughts path counting 

Now let’s look at the original problem: 

Can you decompose it into similar smaller problems? 

8 end

7 end end

6 end end end

5

4

3

2

1

a b c d e f g h



Draughts path counting 

Now let’s look at the original problem: 

Can you decompose it into similar smaller problems? 

8 end

7 end end

6 end end end

5 end end end

4

3

2

1

a b c d e f g h



Draughts path counting 

Now let’s look at the original problem: 

Can you decompose it into similar smaller problems? 

8 end

7 end end

6 end end end

5 end end end

4 end end end end
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a b c d e f g h



Draughts path counting 

Now let’s look at the original problem: 

Can you decompose it into similar smaller problems? 

8 end

7 end end

6 end end end

5 end end end

4 end end end end

3 end end end

2

1

a b c d e f g h



Draughts path counting 

Now let’s look at the original problem: 

Can you decompose it into similar smaller problems? 

8 end

7 end end

6 end end end

5 end end end

4 end end end end

3 end end end

2 end end

1

a b c d e f g h



Draughts path counting 

Now let’s look at the original problem: 

Can you decompose it into similar smaller problems? 

8 end

7 end end

6 end end end

5 end end end

4 end end end end

3 end end end

2 1 1

1

a b c d e f g h



Draughts path counting 

Now let’s look at the original problem: 

Can you decompose it into similar smaller problems? 

8 end

7 end end

6 end end end

5 end end end

4 end end end end

3 1 2 1

2 1 1
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a b c d e f g h



Draughts path counting 

Now let’s look at the original problem: 

Can you decompose it into similar smaller problems? 

8 end

7 end end

6 end end end

5 end end end

4 1 3 3 1

3 1 2 1

2 1 1

1

a b c d e f g h



Draughts path counting 

Now let’s look at the original problem: 

Can you decompose it into similar smaller problems? 

8 end

7 end end

6 end end end

5 4 6 4

4 1 3 3 1

3 1 2 1

2 1 1

1

a b c d e f g h



Draughts path counting 

Now let’s look at the original problem: 

Can you decompose it into similar smaller problems? 

8 end

7 end end

6 4 10 10

5 4 6 4

4 1 3 3 1

3 1 2 1

2 1 1

1

a b c d e f g h



Draughts path counting 

Now let’s look at the original problem: 

Can you decompose it into similar smaller problems? 

8 end

7 14 20

6 4 10 10

5 4 6 4

4 1 3 3 1

3 1 2 1

2 1 1

1

a b c d e f g h



Draughts path counting 

Now let’s look at the original problem: 

Can you decompose it into similar smaller problems? 

8 34

7 14 20

6 4 10 10

5 4 6 4

4 1 3 3 1

3 1 2 1

2 1 1

1

a b c d e f g h



Draughts path counting 

This is a more interesting recursion because the 
problem decomposes not just into one but into 
two smaller problems.  

Instead of a simple domino effect, we could say 
that we get a chain reaction: 



Recursive play 

Bjork, Bachelorette  
directed by Michel Gondry: 

https://www.youtube.com/watch?v=pzUB1D5XQ_w 

 

https://www.youtube.com/watch?v=pzUB1D5XQ_w
https://www.youtube.com/watch?v=pzUB1D5XQ_w
https://www.youtube.com/watch?v=pzUB1D5XQ_w


Recursive play 

Wikipedia: Recursion is the process a procedure 
goes through when one of the steps of the 
procedure involves invoking the procedure itself. 
A procedure that goes through recursion is said 
to be 'recursive'. 



Recursive play 

How would we write a play like Bachelorette 
that has as many recursive levels as the stage 
capacity allows?  

Bachelorette 

1) Things done before the 
play within the play 

2) The play within the play 

3) Things done after the play 
within the play 

But how to specify how many 
times to do it? 

Bachelorette(n) 

      If n > 0 

 Things done before play 

 Bachelorette(n-1) 

 Things done after play 

 

Bachelorette(Stage capacity) 



Recursive play 

Wikipedia: To understand recursion, one must 
recognize the distinction between a procedure and the 
running of a procedure.  

A procedure is a set of steps based on a set of rules. 
The running of a procedure involves actually following 
the rules and performing the steps. An analogy: a 
procedure is like a written recipe; running a procedure 
is like actually preparing the meal. 

An algorithm is like a play; running an algorithm is like 
a performance. 



Recursive play 

Bachelorette(n) 

      If n > 0 

 Things done before the play within the play 

  Bachelorette(n-1) 

              Things done after the play within the play 

Bachelorette(4) 

B(4) 

   If 4>0 

      Before 

      B(3) 

      After 

B(3) 

   If 3>0 

      Before 

      B(2) 

      After 

B(2) 

   If 2>0 

      Before 

      B(1) 

      After 

B(1) 

   If 1>0 

      Before 

      B(0) 

      After 

B(0) 

   If 0>0 

       



Worksheet 3 
Recursive play writing 

Bachelorette(n) 

      If n > 0 

 Things done before the play within the play 

  Bachelorette(n-1) 

              Things done after the play within the play 

Bachelorette(4) 

B(4) 

   If 4>0 

      Before 

      B(3) 

      After 

B(3) 

   If 3>0 

      Before 

      B(2) 

      After 

B(2) 

   If 2>0 

      Before 

      B(1) 

      After 

B(1) 

   If 1>0 

      Before 

      B(0) 

      After 

B(0) 

   If 0>0 

       



Recursive play 

B(n) 

      If n > 0 

 Write n in the blackboard 

 B(n-1) 

B(4) 

B(4) 

   If 4>0 

      Write 4 

      B(3) 

4 

3 

2 

1 

B(3) 

   If 3>0 

      Write 3 

      B(2) 

B(2) 

   If 2>0 

      Write 2 

      B(1) 

B(1) 

   If 1>0 

      Write 1 

      B(0) 

B(0) 

   If 0>0 

       



Recursive play 

B(n) 

      If n > 0 

 B(n-1) 

             Write n in the blackboard 

B(4) 

B(4) 

   If 4>0 

      B(3) 

      Write 4 

B(3) 

   If 3>0 

      B(2) 

      Write 3 

B(2) 

   If 2>0 

      B(1) 

      Write 2 

B(1) 

   If 1>0 

      B(0) 

      Write 1 

B(0) 

   If 0>0 

       

1 

2 

3 

4 



Recursive play 

B(n) 

      If n > 0 

 Write n in the blackboard 

 B(n-1) 

              Write n in the blackboard 

B(4) 

B(4) 

   If 4>0 

      Write 4 

      B(3) 

      Write 4 

4 

3 

2 

1 

1 

2 

3 

4 

B(3) 

   If 3>0 

      Write 3 

      B(2) 

      Write 3 

B(2) 

   If 2>0 

      Write 2 

      B(1) 

      Write 2 

B(1) 

   If 1>0 

      Write 1 

      B(0) 

      Write 1 

B(0) 

   If 0>0 

       



Algorithms 

In Computer Science we don’t write plays we write 
programs, but before programs we write algorithms. 

A computer program has a lot of details and a syntax more 
suited to machines than to humans. Before writing that it 
is a very good practice to write down how the program is 
going to solve the problem. That is what is called the 
algorithm. 



Algorithms 

The word algorithm is derived from the name of 
Muḥammad ibn Mūsā al-Khwārizmī, 
a Persian mathematician.  

He is considered one of the “fathers of algebra” because in 
820 AD he wrote arguably the first algebra book, Al-Kitab 
al-Jabr wa-l-Muqabala.  

The word algebra is derived from the word al-Jabr in the 
title of that  book. 



Worksheet 4 
Algorithms 

B(n) 

      If n > 0 

 Write n in the blackboard 

 B(n-1) 

              Write n in the blackboard 

B(4) 

B(4) 

   If 4>0 

      Write 4 

      B(3) 

      Write 4 

4 

3 

2 

1 

1 

2 

3 

4 

B(3) 

   If 3>0 

      Write 3 

      B(2) 

      Write 3 

B(2) 

   If 2>0 

      Write 2 

      B(1) 

      Write 2 

B(1) 

   If 1>0 

      Write 1 

      B(0) 

      Write 1 

B(0) 

   If 0>0 

       



Algorithms 

P(n) 

      If n = 1 

             Write * 

      else 

             P(n-1) 

             Write * n times 

             P(n-1) 

P(1) 

P(1) 

   If 1 = 1 

      Write * 

* 
 



Algorithms 
P(n) 

      If n = 1 

             Write * 

      else 

             P(n-1) 

             Write * n times 

             P(n-1) 

P(2) 

P(2) 

   If 2 = 1 

   else 

      P(1) 

      Write * 2 times 

      P(1)  

* 
** 
* 

P(1) 

   If 1 = 1 

      Write * 



Algorithms 
P(n) 

      If n = 1 

             Write * 

      else 

             P(n-1) 

             Write * n times 

             P(n-1) 

P(3) 

P(3) 

   If 3 = 1 

   else 

      P(2) 

      Write * 3 times 

      P(2)  

* 
** 
* 
*** 
* 
** 
* 

P(2) 

    



Algorithms 
P(n) 

      If n = 1 

             Write * 

      else 

             P(n-1) 

             Write * n times 

             P(n-1) 

P(4) 

P(4) 

   If 4 = 1 

   else 

      P(3) 

      Write * 4 times 

      P(3)  

* 
** 
* 
*** 
* 
** 
* 
**** 
* 
** 
* 
*** 
* 
** 
* 

P(3) 

    



Rise of the Planet of the Apes 

https://www.youtube.com/watch?v=5-9d0qYk2s4 

 

Directed by Rupert Wyatt. Twentieth 
Century Fox, 2011: 

https://www.youtube.com/watch?v=5-9d0qYk2s4
https://www.youtube.com/watch?v=5-9d0qYk2s4
https://www.youtube.com/watch?v=5-9d0qYk2s4
https://www.youtube.com/watch?v=5-9d0qYk2s4


The legend: 

In an Indian temple there is a large room with three posts in it 
surrounded by 64 golden disks. Brahmin priests, acting out the 
command of an ancient prophecy, have been moving these disks. 

According to the legend, when the last move of the puzzle will be 
completed, the world will end. 

If the legend were true, and if the priests were able to move disks 
at a rate of one per second, using the smallest number of moves, it 
would take them roughly 585 billion years or more than 40 times 
the age of the universe. 

Tower of Hanoi 



Break - Worksheet 5 
Tower of Hanoi 

The objective: to move the entire stack from rod 1 to rod 3. 

The rules: 

a. Only one disk can be moved at a time. 

b. Each move consists of taking the upper disk from one of the 
stacks and placing it on top of another stack i.e. a disk can only 
be moved if it is the uppermost disk on a stack. 

c. No disk may be placed on top of a smaller disk. 



Tower of Hanoi 

Can you think of the smallest case? 

What is the size of the problem? 

 The number of disks. 
 

Therefore the smallest size of the problem is 1, 

just one disk to move from stack 1 to stack 3. 
 

The solution is trivial: move the disk from stack 1 
to stack 3. 



Tower of Hanoi 

   Stack 1               Stack 2       Stack 3 

To move 4 disks from stack 1 
to stack 3: 
 

Divide and conquer principle: 

Can you decompose the problem into similar smaller problems? 



Tower of Hanoi 

   Stack 1               Stack 2       Stack 3 

   Stack 1               Stack 2       Stack 3 

To move 4 disks from stack 1 
to stack 3: 
 
a) Use the solution for 3 to 
move 3 disks from stack 1 to 
stack 2 (smaller problem) 
 

Divide and conquer principle: 

Can you decompose the problem into similar smaller problems? 



Tower of Hanoi 

   Stack 1               Stack 2       Stack 3 

   Stack 1               Stack 2       Stack 3 

   Stack 1               Stack 2       Stack 3 

To move 4 disks from stack 1 
to stack 3: 
 
a) Use the solution for 3 to 
move 3 disks from stack 1 to 
stack 2 (smaller problem) 
 
b) Move the biggest disk from 
stack 1 to stack 3 
 

Divide and conquer principle: 

Can you decompose the problem into similar smaller problems? 



Tower of Hanoi 

   Stack 1               Stack 2       Stack 3 

   Stack 1               Stack 2       Stack 3 

   Stack 1               Stack 2       Stack 3 

   Stack 1               Stack 2       Stack 3 

To move 4 disks from stack 1 
to stack 3: 
 
a) Use the solution for 3 to 
move 3 disks from stack 1 to 
stack 2 (smaller problem) 
 
b) Move the biggest disk from 
stack 1 to stack 3 
 
c) Use the solution for 3 to 
move 3 disks from stack 2 to 
stack 3 (smaller problem) 

Divide and conquer principle: 

Can you decompose the problem into similar smaller problems? 



Hanoi(n, origin, destination) 

      If n = 1 

             Move disk from origin to destination 

      else 

             Hanoi(n-1, origin, other stack) 

             Move disk from origin to destination 

             Hanoi(n-1, other stack, destination) 

How to compute the number of the other stack as a function of 
origin number and destination number? 

 The stacks, 1, 2 and 3, add up to 6. 

 The formula is: other stack = 6 – origin – destination. 

Tower of Hanoi 



Hanoi(n, origin, destination) 

      If n = 1 

             Move disk from origin to destination 

      else 

             Hanoi(n-1, origin, 6 – origin – destination) 

             Move disk from origin to destination 

             Hanoi(n-1, 6 – origin – destination, destination) 

 

def hanoi(n,origin,destination): 

 if n == 1: 

  print "move disk from", origin, "to", destination 

 else: 

  hanoi(n-1,origin,6-origin-destination) 

  print "move disk from", origin, "to", destination 

  hanoi(n-1,6-origin-destination,destination) 

Tower of Hanoi 
Algorithm: 
 
 
 
 
 
 
Python 
program: 



Tower of Hanoi 

Try it the Python program:  
Please login to Google drive  
 Username: theplaywithintheplay 
 Password: gladesmore2017 
Go to Google Drive and download the file 
50_hanoi.py, open it and press F5 to run it. 
To call the function type for example: hanoi(3,1,3) 
 
You can press Arrow Up or Alt-p one or more 
times to bring a previous command, then you can 
edit it and run it. 



A generalization of mathematical induction, called 
structural induction, is used in Computer Science. It can 
have many base cases and many inductive steps. 

Maths induction and CS recursion 

Mathematical induction: 

From small case to bigger case. 

Computer Science recursion: 

From big case to smaller case. 

2k+1

2k-1

.

.

.

5

3

1

2k+1

2k-1

.

.

.
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3

1



Turtle programming 

Seymour Papert et al, Logo Turtle (1969) 



Turtle programming 

pythonturtle.org 



Turtle programming 

pythonturtle.org 



Turtle programming 

Python Shell and Python’s turtle library 



Some of the instructions that you can give to the turtle are: 

 forward(distance) backward(distance) 

 left(angle)  right(angle) 

 penup()  pendown() 

 if then else  speed(n) 

 def 

Demo 

Turtle programming 



Worksheet 6 
Turtle programming 

 
Some of the instructions that you can give to the turtle are: 

 forward(distance) backward(distance) 

 left(angle)  right(angle) 

 penup()  pendown() 

 if then else  speed(n) 

 def 

Try it: In the window called Shell type “import turtle”, 
return and for example turtle.forward(100), turtle.left(90). 



Worksheet 6 
Turtle programming 

 Solution to 6.1): Use Ctrl-O to open the file 
61_pol_solution.py and run it (F5). Advice: close the 
window of the previous file. 

Solution to 6.2): Try pol(10,6,60) 

Solution to 6.3): Open the file 
63_ManyPolygons_solution.py and run it (F5).  

Before running ManyPolygons2(100,8) instead of 
turtle.reset() run rs(), that resets the turtle and makes it 
move at its maximum speed. 



Worksheet 7 
Turtle programming 

 Solution to 7.1): 71_polback.py 

def polBack(length, angle, n): 

 if n > 0: 

  turtle.forward(length) 

  turtle.left(angle) 

  polBack(length, angle, n-1) 

  turtle.right(angle) 

  turtle.backward(length) 



Worksheet 7 
Turtle programming 

 Solution to 7.2): File 72_spiral_solution.py. 

Solution to 7.3): File 73_a_b_figures_solution.py. 

 

Run the examples there that are commented out (lines that 
start with #). 

 



Self-similarity 

A self-similar object is exactly or 
approximately similar to a part of itself. 



Self-similarity 

Spirals are the simplest self-similar objects. 



Self-similarity 

Pink Floyd, Ummagumma 



Self-similarity 

Taken from www.andrewlipson.com 

http://www.andrewlipson.com/


Fractals 

The Mandelbrot set: 
https://vimeo.com/6644398 
 

https://vimeo.com/6644398
https://vimeo.com/6644398


Fractals - Koch curve variant  

We can obtain a Koch curve variant with the following 
procedure.  

Start with a segment: 

 

and replace it with five segments of 1/3 of the original size: 

  

 

and replace each of them with four segments in the same way: 

 

 

 

and then repeat this process again and again. 



Fractals - Koch curve variant  

Here is a description of this curve using a L-system (taken from 
http://en.wikipedia.org/wiki/L-system ): 

start: F 

rule: F → F+F−F−F+F 

Here, F means "draw forward", + means "turn left 90°",  

and − means "turn right 90°". The shrinking factor is 1/3. 

n = 0: 

F 

n = 1: 

F+F−F−F+F 

n = 2: 

F+F−F−F+F + F+F−F−F+F − F+F−F−F+F − F+F−F−F+F + F+F−F−F+F 

http://en.wikipedia.org/wiki/L-system
http://en.wikipedia.org/wiki/L-system
http://en.wikipedia.org/wiki/L-system
http://en.wikipedia.org/wiki/L-system


Fractals - Koch curve variant  

 

 

start: F 

 

rule: F → F+F−F−F+F 

 

F means “draw forward” 

+ means “turn left 90°” 

− means “turn right 90°” 

 

Shrinking factor = 1/3 

Here is a program that draws this curve: 
def koch(length, n): 
 if n == 0: 
  turtle.forward(length) 
 else: 
  koch(length/3,n-1) 
  turtle.left(90) 
  koch(length/3,n-1) 
  turtle.right(90) 
  koch(length/3,n-1) 
  turtle.right(90) 
  koch(length/3,n-1) 
  turtle.left(90) 
  koch(length/3,n-1) 



Worksheet 8 
Drawing fractals  

 
Koch snowflake 



Fractals - Koch snowflake 

Here is a description of this curve using a L-system (taken from 
http://en.wikipedia.org/wiki/Koch_snowflake): 

start: F 

rule: F → F+F−F+F  

Here, F means "draw forward", + means “turn left 60°” 

 and − means “turn right 120°”. The shrinking factor is 1/3. 

n = 0: 

F 

n = 1: 

F+F−F+F  

n = 2: 

F+F−F+F + F+F−F+F − F+F−F+F + F+F−F+F 

http://en.wikipedia.org/wiki/Koch_snowflake
http://en.wikipedia.org/wiki/Koch_snowflake


Fractals - Koch snowflake 

 

start: F 

 

rule: F → F+F−F+F 

 

F means “draw forward” 

+ means “turn left 60°” 

− means “turn right 120°” 

 

Shrinking factor = 1/3 

Here is a program that draws this curve: 
def KochSnowflake1 (length, n): 
 if n == 0: 
  turtle.forward(length) 
 else: 
  koch(length/3,n-1) 
  turtle.left(60) 
  koch(length/3,n-1) 
  turtle.right(120) 
  koch(length/3,n-1) 
   turtle.left(60) 
  koch(length/3,n-1) 



Fractals - Sierpinski triangle 



Fractals 

The Sierpinski triangle 



Fractals – Sierpinski triangle 

 

start: A 

 

rules: A → B−A−B 

           B → A+B+A 

 

A and B both mean “draw 
forward” 

+ means “turn left 60°” 

− means “turn right 60°” 

 

Shrinking factor = 1/2 

Here is a program that draws this curve: 
def sierpinski(variable, length, n): 
 if n == 0: 
     turtle.forward(length) 
 else: 
     if variable == 'A': 
  sierpinski('B',length/2, n-1) 
  turtle.right(60) 
  sierpinski('A',length/2, n-1) 
  turtle.right(60) 
  sierpinski('B',length/2, n-1) 
     else: 
  sierpinski('A',length/2, n-1) 
  turtle.left(60) 
  sierpinski('B',length/2, n-1) 
  turtle.left(60) 
  sierpinski('A',length/2, n-1) 



Open the file 80_Sierpinski.py and run the examples that 
are commented out (lines that start with #). 

 

If you have time open also the file 90_Dragon.py and run 
the examples there. 

Fractals – Sierpinski triangle 



Fractals – Dragon curve 

Starting from a base segment, replace each segment by 2 segments 
with a right angle and with a rotation of 45° alternatively to the 
right and to the left: 



Fractals – Dragon curve 

 

start: FX 

 

rules: X → X+YF 

           Y → FX-Y 

 

F means "draw forward” 

- means "turn left 90°“ 

+ means "turn right 90°". 

Here is a program that draws this curve: 

def dragon(variable, length, n): 

 if n == 0: 

  turtle.forward(length) 

 else: 

  if variable == 'X': 

        dragon('X',length,n-1) 

        turtle.right(90) 

        dragon('Y',length,n-1) 

        turtle.forward(length) 

  else: 

        turtle.forward(length) 

        dragon('X',length,n-1) 

        turtle.left(90) 

        dragon('Y',length,n-1) 



Open the file 90_Dragon.py and run the examples there. 

Fractals – Dragon curve 



Recursion vs. Iteration 

Recursion 
 

def pol(length, angle, n): 
      if n > 0: 
 turtle.forward(length) 
 turtle.left(angle) 
 pol(length, angle, n-1) 

Iteration 
 

def pol(length, angle, n): 
      for i in range(n): 
 turtle.forward(length) 
 turtle.left(angle) 
 
Example of range:  
 range(5)=[0,1,2,3,4] 

Whatever you can do with recursion you can do with iteration and the other way around. 
Usually iteration is used instead of single recursion but not instead of multiple recursion.  
Note: to compute the Fibonacci numbers with recursion can be very inefficient. 
Some Artificial Intelligence programming languages, like Lisp and Prolog, use recursion heavily. 
They belong to different programming paradigms than the most commonly used languages. 
The language that we use influences the way we think. 



Douglas Hofstadter, 
 Gödel, Escher, Bach:  

an Eternal Golden Braid 
(GEB) 

Self-reference, 
recursion, 

self-reproduction 
and much more. 



From Gödel, Escher, Bach 



From Gödel, Escher, Bach 
The sentence 

 "The sentence 

  "The sentence 

   "The sentence 

    … 

     … 

      etc,.,etc. 

     … 

    …. 

   is infinitely long" 

  is infinitely long" 

 is infinitely long" 

is infinitely long. 



M. C. Escher, Circle Limit III 



M. C. Escher, Drawing Hands 



M. C. Escher, Relativity 

Relativity in Lego from www.andrewlipson.com   

http://www.andrewlipson.com/


Optical feedback 
from 

Gödel, Escher, Bach 



Optical feedback 
from 

Gödel, Escher, Bach 



Self-reference - Optical feedback 

 

I need two volunteers… 
 



That’s all!  
 

Please take a copy of the answers. 
 

Thank you. 


