
Worksheet 1 
Self-reference 

 

 

1) Play “Guess the number” with a classmate. In this game the first player thinks of 

a natural number between 1 and 15 (including 1 and 15). The second player has to 

guess it. In each attempt the first player can only answer “higher”, “lower” or 

“correct”. The second player gets 1 point for each attempt. The players take turns to 

be the first and second. The winner is the one with less total points after 2 rounds.  

a) What is the best strategy?  

You don't have to finish these questions  

With the best strategy what is the maximum number of questions needed to guess a 

number between 

b) 1 and 15?  

c) 1 and 16?  

d) 1 and 2n-1? 

e) 1 and 2n? 

You don't have to finish these questions (many of them 

are just jokes!) 

-Here are some examples of self-referential sentences: 

This sentence contains five words. 

This sentence no verb. 

TLA stands for Three-Letter Acronym. 

 

 

2) Follow these instructions: 

Read this sentence and do what it says twice. 

 

3) If I say to you: “I am lying”, is that true or false? 

 



4) Do you see a contradiction between these cartoons? 

- http://marekbennett.com/2014/03/06/recursive-load/ 

 

- http://marekbennett.com/2013/12/27/infinite-doodle/ 

 
It might not look it, but adding all the details to this drawing took FOREVER. 



Worksheet 2 
Draughts path counting 

 

In the draughts game an uncrowned piece can only move one step diagonally 

forward. For example, an uncrowned piece in d1 can only move to c2 or e2 and an 

uncrowned piece in f5 can only move to e6 or g6: 

 

If you start with an uncrowned piece in d1, how many paths are that end in c8? 
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Worksheet 3 
Recursive play writing 

 

1) Could you write how the blackboard would look after performing the following 

play? Assume the blackboard is empty before the play. 

B1(n) 

      If n > 0 

  Write n in the blackboard 

   B1(n-1) 

B1(4) 

 

2) Could you write how the blackboard would look after performing the following 

play? Assume the blackboard is empty before the play. 

B2(n) 

      If n > 0 

  B2(n-1) 

  Write n in the blackboard 

B2(4) 

 

3) For the following sub-play: 

B3(n) 

      If n > 0 

   Write n in the blackboard  

  B3(n-1) 

   Write n in the blackboard 

 

Could you write how the blackboard would look after performing the following 

plays? Assume the blackboard is empty before the play. 

a) B3(1) b) B3(2) c) B3(3) d) B3(4) 

    
 
 
 
 
 
 
 
 

 



Worksheet 4 
Algorithms 

1) For the following algorithm: 

P1(n) 

If n = 1 

Write * in a new line in the blackboard 

else 

P1(n-1) 

Write * n times in a new line in the blackboard 

P1(n-1)  

Could you write how the blackboard would look after running the following 

statements? Assume the blackboard is empty at the beginning. 

a) P1(1) b) P1(2) c) P1(3) d) P1(4) 

    
 
 
 
 
 
 
 
 
 
 
 

You don't have to finish these questions. 

2) Could you write an algorithm P2 that will give the following outputs: 

P2(1) P2(2) P2(3) P2(4) 

* ** 
* 
* 

*** 
** 
* 
* 
** 
* 
* 

**** 
*** 
** 
* 
* 
** 
* 
* 
*** 
** 
* 
* 
** 
* 
* 

 



 

 

3) Could you write an algorithm P3 that will give the following outputs: 

 

P3(1) P3(2) P3(3) P3(4) 

* * 
* 
** 

* 
* 
** 
* 
* 
** 
*** 

 

* 
* 
** 
* 
* 
** 
*** 
* 
* 
** 
* 
* 
** 
*** 
**** 

 
 

4) Is there something wrong with this cartoon? 

From the New Yorker, 10/Apr/10: 

 



Worksheet 5 
Tower of Hanoi 

 

 

 
            Stack 1          Stack 2      Stack 3 

The objective of the puzzle is to move the entire stack from rod 1 to rod 3, obeying 

the following simple rules: 

a. Only one disk can be moved at a time. 

b. Each move consists of taking the upper disk from one of the stacks and placing it 

on top of another stack i.e. a disk can only be moved if it is the uppermost disk on a 

stack. 

c. No disk may be placed on top of a smaller disk. 

 

1) Try to solve the puzzle for 4 disks with the paper version that we are 

providing you. If you have online access you could use this version: 

http://www.mathsisfun.com/games/towerofhanoi.html. 

You don't have to finish this question. 

2) Write a recursive algorithm to solve a Tower of Hanoi of size n. 

3) Conjecture what is the minimum number of moves. 

 

-From xkcd: 

 



Worksheet 6 
Turtle programming 

 

Remember, some of the instructions that you can give to the turtle are: 

forward(distance) backward(distance) 

 left(angle)  right(angle) 

 penup()  pendown() 

 if then else  speed(n) 

 def 

Note: Unfortunately when you use the turtle graphics sometimes there are problems 

resizing or moving the Python Turtle Graphics window (where the turtle appears). In 

that case you can click on another window and click back on the Python Turtle 

Graphics window then resize it and/or move it. 

Tip: You can press Alt-p one or more times to bring a previous command, then you 

can edit it and run it. 

 

1) For the following program: 

 

def pol(length, angle, n): 

 if n > 0: 

  turtle.forward(length) 

  turtle.left(angle) 

  pol(length, angle, n-1) 

 

Could you draw how the screen would look after running the following 

instructions? Assume the screen is empty at the beginning. 

pol(100, 120,3) 

pol(100, 90,4) 

pol(100, 72,5) 

pol(100, 60,6) 

 

 

 

 

 

2) What figure would you get if you increase a lot the number of sides? 

 



3) Additionally now we define: 

def polygon(length, n): 

 pol(length, 360/n, n) 

 

def ManyPolygons1(length, n): 

 if length>0: 

  polygon(length, n) 

  ManyPolygons1(length-10, n) 

 

def ManyPolygons2(length, n): 

 if n > 2: 

  polygon(length, n) 

  ManyPolygons2(length, n-1) 

 

Could you draw how the screen would look after running the following 

instructions? 

 

a) ManyPolygons1(100,8) 

 

 

 

 

 

 

 

 

 

 

b) turtle.reset() 

ManyPolygons2(100,8) 

 

 

 

 

 



Worksheet 7 
Turtle programming 

 

Remember, some of the instructions that you can give to the turtle are: 

forward(distance) backward(distance) 

 left(angle)  right(angle) 

 penup()  pendown() 

 if then else  speed(n) 

 def 

Note: Unfortunately when you use the turtle graphics sometimes there are problems 

resizing or moving the Python Turtle Graphics window (where the turtle appears). In 

that case you can click on another window and click back on the Python Turtle 

Graphics window then resize it and/or move it. 

Tip: You can press Alt-p one or more times to bring a previous command, then you 

can edit it and run it. 

 

1) When we run: 

polygon(100,7) 

the turtle does not go back to its initial position as it does when we run 

polygon(100,6) 

 

How would you modify the definition of pol: 

 

def pol(length, angle, n): 

 if n > 0: 

  turtle.forward(length) 

  turtle.left(angle) 

  pol(length, angle, n-1) 

 

to make sure that the turtle goes back to its initial position after drawing the 

polygon? 

  



You don't have to finish these questions. If you find 

them hard just try them in your computer. 

2) Now to draw spirals we define a function similar to the one to draw polygons but 

with a new parameter ShrinkingFactor: 

 

def spiral(length, angle, n, ShrinkingFactor): 

 if n > 0: 

  turtle.forward(length) 

  turtle.left(angle) 

  spiral(length*ShrinkingFactor, angle, n-1, ShrinkingFactor) 

 

Could you try to draw how the screen would look after running each of the 

following instructions? 

 

a) turtle.reset() 

spiral(100,90,10,0.9) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b) turtle.reset() 

spiral(100,60,20,0.95) 

 

 

 

 

 

 

 

 



 

 

 

c) turtle.reset() 

spiral(200,74,150,0.975) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d) turtle.reset() 

spiral(50,10,200,0.975) 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



3) Given the following functions: 

def a(length, angle, n): 

 turtle.color('red') 

 if n > 0: 

  pol(length/2.0, 360.0/n, n) 

  turtle.forward(length) 

  turtle.left(angle) 

  a(length, angle, n-1) 

 

def b1(length, angle, NumSides, NumCircles): 

 if NumCircles > 0: 

  polygon(length, NumSides) 

  turtle.left(angle) 

  b1(length, angle, NumSides, NumCircles-1) 

 

def b(length, NumSides, NumCircles):  

 turtle.color('red') 

 b1(length, 360.0/NumCircles, NumSides, NumCircles)   

 

Can you match the following function calls to the figures? 

a(20,3,36) 

b(20,36,36)  

 
Figure 1        Figure 2 

 

 

 



Worksheet 8 
Drawing fractals 

 

Koch curve variant reminder  
(The first question is on the next page) 

 

 

 

 

 

 

 

 

 

 

 

 

 

L-system: 

start: F 

rule: F → F+F−F−F+F 

F means “draw forward” 

+ means “turn left 90°” 

− means “turn right 90°” 

Shrinking factor = 1/3 
 

Python program: 
 

def koch(length, n): 

 if n == 0: 

  turtle.forward(length) 

 else: 

  koch(length/3,n-1) 

  turtle.left(90) 

  koch(length/3,n-1) 

  turtle.right(90) 

  koch(length/3,n-1) 

  turtle.right(90) 

  koch(length/3,n-1) 

  turtle.left(90) 

  koch(length/3,n-1) 



1) The first four iterations of the Koch snowflake are: 

 
For just one side of the triangle the first five levels are:

 
a) Can you define the L-system that generates one side? 

b) Can you translate that into a python program? 

c) Can you write a python program to draw the full Koch snowflake? 
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Answers  
 

 

Worksheet 1 - Self-reference 

1) Play “Guess the number” with a classmate. In this game the first player thinks of 

a natural number between 1 and 15 (including 1 and 15). The second player has to 

guess it. In each attempt the first player can only answer “higher”, “lower” or 

“correct”. The second player gets 1 point for each attempt. The players take turns to 

be the first and second. The winner is the one with less total points after 2 rounds.  

a) What is the best strategy?  

The best strategy is to say 8, then if it is lower say 4 and if it is higher say 12, 
then, if you haven’t guessed say 2, 6, 10 or 14 depending on the case. The idea 
is to split the set of numbers into two subsets of equal sizes and then do the 
same again and again until you guess. This strategy is called binary search and is 
a particular case of the divide and conquer principle. Binary search can easily be 
written as a recursive program (and as a non-recursive one as well). 

With the best strategy what is the maximum number of questions needed to guess a 

number between 

b) 1 and 15?  

4.  This would be the case if the number is odd. 

c) 1 and 16?  

5. Following exactly the same strategy we could need 5 if the number is 15 or 
16. 

d) 1 and 2n-1? 

n. This would be the case if the number is odd. Although if you realize that the 
other player is doing that the meaning of the “best strategy” could change! 

e) 1 and 2n? 

n + 1. 
 

2) Follow these instructions: 

Read this sentence and do what it says twice. 

If you were to follow the instructions closely you would enter into an infinite 
loop, that is you would be repeating the same action forever. Sorry. 

 

 



 

3) If I say to you: “I am lying”, is that true or false? 

If it is true then I am lying, therefore it is false. 

If it is false then I am lying, therefore it is true. 

This is the Liar’s paradox, probably the most famous self-referential paradox. 
Here by paradox we mean a self-contradictory statement. 

A version of this paradox is Pinocchio’s paradox: Pinocchio says “My nose is 
growing”.   

 

4) Do you see a contradiction between these cartoons? 

The first cartoon implies that the height of all the vans is finite, the second one 
that the time to draw the cartoon was infinite. 

  



Mathematical induction examples 

 

To prove that a statement S(n) is true for all the natural numbers n by mathematical 

induction you have to prove: 

1. The base case: S(0) is true or S(1) is true. 

2. The inductive step: if S(k) is true then S(k+1) is also true. 

 

1) Prove by mathematical induction that: 

20 + 21 + 22 + … + 2n = 2n+1 – 1,  n≥0 

 

Base case:  20 = 1 

  20+1 – 1 = 2 – 1 = 1  

  therefore 20 = 20+1 – 1, that is S(0) is true. 

Inductive step: Let’s assume that S(k) is true: 

20 + 21 + 22 + … + 2k = 2k+1 – 1 

If we add 2k+1 to both sides we get: 

20 + 21 + 22 + … + 2k + 2k+1 = 2k+1 – 1 + 2k+1  

20 + 21 + 22 + … + 2k + 2k+1 = 2k+2 – 1 

Then S(k+1) is true. Therefore S(k) ⇒ S(k+1). 

 

2) Prove by mathematical induction that: 

1 + 2 + … + n = n(n + 1)/2,  n≥1 

 

Base case:  1 = 1x2/2 

  therefore S(1) is true. 

Inductive step: Let’s assume that S(k) is true: 

1 + 2 + … + k = k(k + 1)/2 

If we add k+1 to both sides we get: 

1 + 2 + … + k + (k+1) = k(k + 1)/2 + (k+1) 

1 + 2 + … + k + (k+1) = k(k + 1)/2 + 2(k+1)/2 

Then take common factor k+1 on the right side: 

1 + 2 + … + k + (k+1) = (k + 1)(k+2)/2 

Then S(k+1) is true. Therefore S(k) ⇒ S(k+1). 

 

3) Prove by mathematical induction that: 

12 + 22 + … + n2 = n(n + 1)(2n + 1)/6,  n≥1 

 

Base case:  12 = 1x2x3/6 

  therefore S(1) is true. 



Inductive step: Let’s assume that S(k) is true: 

12 + 22 + … + k2 = k(k + 1)(2k + 1)/6 

If we add (k+1)2 to both sides we get: 

12 + 22 + … + k2 + (k+1)2 = k(k + 1)(2k + 1)/6 + (k+1)2 

12 + 22 + … + k2 + (k+1)2 = (k + 1)(2k2 + k)/6 + 6(k+1)2/6 

Then take common factor k+1 on the right side: 

12 + 22 + … + k2 + (k+1)2 = (k + 1)(2k2 + 7k + 6)/6 

12 + 22 + … + k2 + (k+1)2 = (k + 1)(k+2)(2k+3)/6 

12 + 22 + … + k2 + (k+1)2 = (k + 1)((k+1)+1)(2(k+1)+1)/6 

Then S(k+1) is true. Therefore S(k) ⇒ S(k+1). 

 

Worksheet 2 - Draughts path counting 

 

If you start with an uncrowned piece in d1, how many paths are that end in c8? 

34. As explained in class, applying the divide and conquer principle you get a pattern 

of numbers very close to Pascal’s triangle (it would be the same if the board were 

infinite). 

 

  

8 34

7 14 20

6 4 10 10

5 4 6 4

4 1 3 3 1

3 1 2 1

2 1 1

1

a b c d e f g h



Worksheet 3 - Recursive play writing 

1) Could you write how the blackboard would look after performing the following 
play? Assume the blackboard is empty before the play. 
B1(n) 
      If n > 0 

  Write n in the blackboard 

   B1(n-1) 

B1(4) 

Answer:  4 
3 
2 
1 

2) Could you write how the blackboard would look after performing the following 
play? Assume the blackboard is empty before the play. 
B2(n) 
      If n > 0 

  B2(n-1) 

  Write n in the blackboard 

B2(4) 

Answer:  1  
2 
3 
4 

3) For the following sub-play: 

B3(n) 

      If n > 0 

   Write n in the blackboard  

  B3(n-1) 

   Write n in the blackboard 

Could you write how the blackboard would look after performing the following 

plays? Assume the blackboard is empty before the play. 

a) B3(1) b) B3(2) c) B3(3) d) B3(4) 

1 

1 

2 

1 
1 

2 

3 

2 
1 

1 

2 
3 

4 

3 
2 

1 

1 
2 

3 
4 



Worksheet 4 - Algorithms 

 

4) For the following algorithm: 

P1(n) 

If n = 1 

Write * in a new line in the blackboard 

else 

P1(n-1) 

Write * n times in a new line in the blackboard 

P1(n-1)  

Could you write how the blackboard would look after running the following 

statements? Assume the blackboard is empty at the beginning. 

 

 

 

a) P1(1) b) P1(2) c) P1(3) d) P1(4) 

* * 
** 
* 

* 
** 
* 
*** 
* 
** 
* 

 

* 
** 
* 
*** 
* 
** 
* 
**** 
* 
** 
* 
*** 
* 
** 
* 

 

 

 

 

 



5) Could you write an algorithm P2 that will give the following outputs: 

 

P2(1) P2(2) P2(3) P2(4) 

* ** 
* 
* 

*** 
** 
* 
* 
** 
* 
* 

**** 
*** 
** 
* 
* 
** 
* 
* 
*** 
** 
* 
* 
** 
* 
* 

 

 

P2(n) 

If n = 1 

Write * in a new line in the blackboard 

else 

Write * n times in a new line in the blackboard 

P2(n-1) 

P2(n-1)  

  



 

6) Could you write an algorithm P3 that will give the following outputs: 

 

P3(1) P3(2) P3(3) P3(4) 

* * 
* 
** 

* 
* 
** 
* 
* 
** 
*** 

 

* 
* 
** 
* 
* 
** 
*** 
* 
* 
** 
* 
* 
** 
*** 
**** 

 

 

P3(n) 

If n = 1 

Write * in a new line in the blackboard 

else 

P3(n-1) 

P3(n-1)  

Write * n times in a new line in the blackboard 

 

7) Is there something wrong with this cartoon? 

The Russian doll typically has a Russian doll inside but not a doctor. 

 

  



Worksheet 5 - Tower of Hanoi 

 

1) Try to solve the puzzle for 4 disks with the paper version that we are 

providing you. 

Move disk from stack 1 to stack 2. 

Move disk from stack 1 to stack 3. 

Move disk from stack 2 to stack 3. 

 

Move disk from stack 1 to stack 2. 

Move disk from stack 3 to stack 1. 

Move disk from stack 3 to stack 2. 

 

Move disk from stack 1 to stack 2. 

Move disk from stack 1 to stack 3. 

Move disk from stack 2 to stack 3. 

 

Move disk from stack 2 to stack 1. 

Move disk from stack 3 to stack 1. 

Move disk from stack 2 to stack 3. 

 

Move disk from stack 1 to stack 2. 

Move disk from stack 1 to stack 3. 

Move disk from stack 2 to stack 3. 

 

 

2) Write a recursive algorithm to solve a Tower of Hanoi of size n. 

 

Hanoi(n, origin, destination) 

      If n = 1 

             Move disk from origin to destination 

      else 

             Hanoi(n-1, origin, 6 – origin – destination) 

             Move disk from origin to destination 

             Hanoi(n-1, 6 – origin – destination, destination) 

 

 

3) Conjecture what is the minimum number of moves. 

2n-1 

 



 

Worksheet 6 - Turtle programming 

You can download Python and IPython (Interactive Python) from: 

http://ipython.org/install.html 

Note: Unfortunately when you use the turtle graphics sometimes there are problems 

resizing or moving the window where the turtle appears. In that case do 

turtle.done(), resize and/or move the window, go back to the IPython window, press 

Ctrl-c and continue. 

1) For the following program: 

 

def pol(length, angle, n): 

 if n > 0: 

  turtle.forward(length) 

  turtle.left(angle) 

  pol(length, angle, n-1) 

 

Could you draw how the screen would look after running the following 

instructions? Assume the screen is empty at the beginning. 

turtle.reset() 

pol(100, 120,3) 

pol(100, 90,4) 

pol(100, 72,5) 

pol(100, 60,6) 

 

 

2) What figure would you get if you increase a lot the number of sides? 

A circle. 

http://ipython.org/install.html
http://ipython.org/install.html


3) Additionally now we define: 

def polygon(length, n): 

 pol(length, 360/n, n) 

 

def ManyPolygons1(length, n): 

 if length>0: 

  polygon(length, n) 

  ManyPolygons1(length-10, n) 

 

def ManyPolygons2(length, n): 

 if n > 2: 

  polygon(length, n) 

  ManyPolygons2(length, n-1) 

 

Could you draw how the screen would look after running the following 

instructions? 

 

a) ManyPolygons1(100,8) 

 
 

b) ManyPolygons2(100,8) 

 
 



4) When we run: 

polygon(7) 

the turtle does not go back to its initial position as it does when we run 

polygon(6) 

 

How would you modify the definition of pol: 

 

def pol(length, angle, n): 

 if n > 0: 

  turtle.forward(length) 

  turtle.left(angle) 

  pol(length, angle, n-1) 

 

to make sure that the turtle goes back to its initial position after drawing the 

polygon? 

def polBack(length, angle, n): 

 if n > 0: 

  turtle.forward(length) 

  turtle.left(angle) 

  polBack(length, angle, n-1) 

  turtle.right(angle) 

  turtle.backward(length) 

 

def polygonBack(length, n): 

 polBack(length, 360/n, n) 

 

def ManyPolygonsBack2(length, n): 

 if n > 2: 

  polygonBack(length, n) 

  ManyPolygonsBack2(length, n-1) 

 

Example: ManyPolygonsBack2(100,8) 

 



Note: the problem is due to the fact that python interprets 360/n as an integer 

division. To do a real division is enough to specify 360.0/n: 

 

def polygon(length, n): 

 pol(length, 360.0/n, n) 

 

You don't have to finish these questions. 

 

5) Now to draw spirals we define a function similar to the one to draw polygons but 

with a new parameter ShrinkingFactor: 

 

def spiral(length, angle, n, ShrinkingFactor): 

 if n > 0: 

  turtle.forward(length) 

  turtle.left(angle) 

  spiral(length*ShrinkingFactor, angle, n-1, ShrinkingFactor) 

 

Could you try to draw how the screen would look after running each of the 

following instructions? 

 

a) turtle.reset() 

spiral(100,90,10,0.9) 

 

 
  



b) turtle.reset() 

spiral(100,60,20,0.95) 

 

 
 

c) turtle.reset() 

spiral(200,74,150,0.975) 

 
  



d) turtle.reset() 

spiral(50,10,200,0.975) 

 

 

 

Another function to draw spirals is: 

def spiral2(length, angle, n, increment): 

 if n > 0: 

  turtle.forward(length) 

  turtle.right(angle) 

  spiral2(length + increment, angle, n-1, increment) 

 

You could try for example: spiral2(1.25,71.5,360,0.75) 

  



6) Given the following functions: 

def a(length, angle, n): 

 turtle.color('red') 

 if n > 0: 

  pol(length/2.0, 360.0/n, n) 

  turtle.forward(length) 

  turtle.left(angle) 

  a(length, angle, n-1) 

 

def b1(length, angle, NumSides, NumCircles): 

 if NumCircles > 0: 

  polygon1(length, NumSides) 

  turtle.left(angle) 

  b1(length, angle, NumSides, NumCircles-1) 

 

def b(length, NumSides, NumCircles):  

 turtle.color('red') 

 b1(length, 360.0/NumCircles, NumSides, NumCircles)   

 

Can you match the following function calls to the figures? 

a(20,3,36) 

b(20,36,36)  

 
Figure 1        Figure 2 

 

a(20,3,36) draws Figure 1 and b(20,36,36) draws Figure 2. 

 

 



Worksheet 7 - Drawing fractals 

 

Koch curve variant 
 

 

 

 

 

 

 

 

 

 

 

 

 

L-system (taken from http://en.wikipedia.org/wiki/L-system): 

start: F 

rule: F → F+F−F−F+F 

F means “draw forward” 

+ means “turn left 90°” 

− means “turn right 90°” 

Shrinking factor = 1/3 
 

Python program: 
 

def koch(length, n): 

 if n == 0: 

  turtle.forward(length) 

 else: 

  koch(length/3,n-1) 

  turtle.left(90) 

  koch(length/3,n-1) 

  turtle.right(90) 

  koch(length/3,n-1) 

  turtle.right(90) 

  koch(length/3,n-1) 

  turtle.left(90) 

  koch(length/3,n-1) 

 

 

http://en.wikipedia.org/wiki/L-system


1) The first four iterations of the Koch snowflake are: 

 
For just one side of the triangle the first five levels are:

 
 

 

 



a) Can you define the L-system that generates one side? 

L-system: 

start: F 

rule: F → F+F−F+F 

F means “draw forward” 

+ means “turn left 60°” 

− means “turn right 120°” 

Shrinking factor = 1/3 

 

b) Can you translate that into a python program? 

 

def KochSnowflake1(length, n): 

 if n == 0: 

  turtle.forward(length) 

 else: 

  KochSnowflake1(length/3,n-1) 

  turtle.left(60) 

  KochSnowflake1(length/3,n-1) 

  turtle.right(120) 

  KochSnowflake1(length/3,n-1) 

  turtle.left(60) 

  KochSnowflake1(length/3,n-1) 

 

c) Can you write a python program to draw the full Koch snowflake? 

 

def KochSnowflake(length, n): 

 KochSnowflake1(length,n) 

 turtle.right(120) 

 KochSnowflake1(length,n) 

 turtle.right(120) 

 KochSnowflake1(length,n) 

 turtle.right(120) 

 

  



Other fractal and L-system examples 

Sierpinski triangle 

 
# http://en.wikipedia.org/wiki/L-system#Example_5:_Sierpinski_triangle 

# The Sierpinski triangle drawn using an L-system. 

# variables : A B 

# constants : + − 

# start  : A 

# rules  : (A → B−A−B), (B → A+B+A) 

# angle  : 60° 

# Here, A and B both mean "draw forward",  

# + means "turn left by angle", and − means "turn right by angle"  

# Shrinking factor = 1/2 
 

import turtle 

def sierpinski(variable, length, n): 

 if n == 0: 

  turtle.forward(length) 

 else: 

  if variable == 'A': 

   sierpinski('B',length/2, n-1) 

   turtle.right(60) 

   sierpinski('A',length/2, n-1) 

   turtle.right(60) 

   sierpinski('B',length/2, n-1) 

  else: 

   sierpinski('A',length/2, n-1) 

   turtle.left(60) 

   sierpinski('B',length/2, n-1) 

   turtle.left(60) 

   sierpinski('A',length/2, n-1) 

http://en.wikipedia.org/wiki/L-system#Example_5:_Sierpinski_triangle


Dragon curve 
 

Starting from a base segment, replace each segment by 2 segments with a 

right angle and with a rotation of 45° alternatively to the right and to the left: 

 

 
 

 
# http://en.wikipedia.org/wiki/L-system#Example_6:_Dragon_curve 

# start  : X 

# rules  : (X → X+YF), (Y → FX-Y) 

# F means "draw forward", - means "turn left 90°", + means "turn right 90°".  

# X and Y do not correspond to any drawing action. 

 

import turtle 

def dragon(variable, length, n): 

 if n == 0: 

  turtle.forward(length) 

 else: 

  if variable == 'X': 

   dragon('X',length,n-1) 

   turtle.right(90) 

   dragon('Y',length,n-1) 

   turtle.forward(length) 

  else: 

   turtle.forward(length) 

   dragon('X',length,n-1) 

   turtle.left(90) 

   dragon('Y',length,n-1) 

http://en.wikipedia.org/wiki/L-system#Example_6:_Dragon_curve


The output of dragon('X',2,10) is: 

 

 
 

 

The output of dragon('X',1,12) is: 

 

 


